关键词: GABAergic interneuron Inhibition Mitochondria calcium uniporter Plasma membrane calcium ATPase SERCA Sodium-calcium exchanger

Mesh : Action Potentials Animals CA1 Region, Hippocampal / cytology metabolism Calcium / metabolism Calcium Signaling Dendrites / metabolism Interneurons / cytology metabolism Mice Synapses / metabolism

来  源:   DOI:10.1016/j.ceca.2018.12.002   PDF(Sci-hub)

Abstract:
Local circuit GABAergic inhibitory interneurons control the integration and transfer of information in many brain regions. Several different forms of plasticity reported at interneuron excitatory synapses are triggered by cell- and synapse-specific postsynaptic calcium (Ca2+) mechanisms. To support this function, the spatiotemporal dynamics of dendritic Ca2+ elevations must be tightly regulated. While the dynamics of postsynaptic Ca2+ signaling through activation of different Ca2+ sources has been explored, the Ca2+ extrusion mechanisms that operate in interneuron dendrites during different patterns of activity remain largely unknown. Using a combination of whole-cell patch-clamp recordings and two-photon Ca2+ imaging in acute mouse hippocampal slices, we characterized the Ca2+ extrusion mechanisms activated by Ca2+ transients (CaTs) associated with backpropagating action potentials (bAPs) in dendrites of hippocampal CA1 stratum radiatum interneurons. Our data showed that Ca2+ clearance increased as a function of activity, pointing to an activity-dependent recruitment of specific Ca2+ extrusion mechanisms. bAP-CaTs were significantly prolonged in the presence of the plasma membrane Ca2+ ATPase (PMCA) and Na+/Ca2+ exchanger (NCX) inhibitors as well as the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) and the mitochondria Ca2+ uniporter (MCU) blockers. While PMCA, NCX and SERCA pumps cooperated in the cytosolic Ca2+ removal at a wide range of concentrations, the MCU was only activated at higher Ca2+ loads produced by repetitive interneuron firing. These results identify a division of labor between distinct Ca2+ extrusion mechanisms shaping dendritic Ca2+ dynamics and possibly contributing to activity-dependent regulation of synaptic inputs in interneurons. In addition, the MCU activated by larger Ca2+ levels may be involved in the activity-dependent ATP production or interneuron-selective vulnerability associated with cytosolic Ca2+ overloads under pathological conditions.
摘要:
暂无翻译
公众号