Sodium-calcium exchanger

钠钙交换剂
  • 文章类型: Journal Article
    帕金森病(PD)是一种进行性神经退行性疾病,缺乏有效的治疗策略来阻止或延缓其进展。Ca2+离子的稳态对于确保最佳的细胞功能和存活至关重要。尤其是神经元细胞。在PD的背景下,调节细胞Ca2+的系统受损,导致Ca2+依赖性突触功能障碍,神经元可塑性受损,最终,神经元丢失。最近针对了解PD病理学的研究努力已经产生了重要的见解,特别强调Ca2+失调之间的密切关系,神经炎症,和神经变性。然而,导致PD中多巴胺能神经元选择性丢失的确切机制仍然难以捉摸。Ca2+稳态的破坏是一个关键因素,参与各种神经退行性和神经炎症途径,并影响储存Ca2+的细胞内细胞器。具体来说,线粒体功能受损,溶酶体,和内质网(ER)在Ca2+代谢被认为是促进疾病的病理生理。Na+-Ca2+交换剂(NCX)被认为是各种细胞类型中Ca2+稳态的重要关键调节剂。包括神经元,星形胶质细胞,和小胶质细胞.NCX活性的改变与不同PD模型中的神经变性过程相关。在这次审查中,我们将探讨Ca2+失调和神经炎症作为PD相关神经变性的主要驱动因素的作用,强调NCX在PD病理学中的关键作用。因此,NCXs及其与细胞内细胞器的相互作用可能成为PD神经变性机制的潜在关键参与者,为旨在停止神经变性的治疗干预提供了有希望的途径。
    Parkinson\'s disease (PD) is a progressive neurodegenerative disorder that lacks effective treatment strategies to halt or delay its progression. The homeostasis of Ca2+ ions is crucial for ensuring optimal cellular functions and survival, especially for neuronal cells. In the context of PD, the systems regulating cellular Ca2+ are compromised, leading to Ca2+-dependent synaptic dysfunction, impaired neuronal plasticity, and ultimately, neuronal loss. Recent research efforts directed toward understanding the pathology of PD have yielded significant insights, particularly highlighting the close relationship between Ca2+ dysregulation, neuroinflammation, and neurodegeneration. However, the precise mechanisms driving the selective loss of dopaminergic neurons in PD remain elusive. The disruption of Ca2+ homeostasis is a key factor, engaging various neurodegenerative and neuroinflammatory pathways and affecting intracellular organelles that store Ca2+. Specifically, impaired functioning of mitochondria, lysosomes, and the endoplasmic reticulum (ER) in Ca2+ metabolism is believed to contribute to the disease\'s pathophysiology. The Na+-Ca2+ exchanger (NCX) is considered an important key regulator of Ca2+ homeostasis in various cell types, including neurons, astrocytes, and microglia. Alterations in NCX activity are associated with neurodegenerative processes in different models of PD. In this review, we will explore the role of Ca2+ dysregulation and neuroinflammation as primary drivers of PD-related neurodegeneration, with an emphasis on the pivotal role of NCX in the pathology of PD. Consequently, NCXs and their interplay with intracellular organelles may emerge as potentially pivotal players in the mechanisms underlying PD neurodegeneration, providing a promising avenue for therapeutic intervention aimed at halting neurodegeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肾素-血管紧张素-醛固酮系统(RAAS)与全身性和神经性高血压有关。RAAS抑制剂的输注降低了交感神经节的动脉压和使用依赖性突触传递的功效。当前的研究旨在阐明RAAS介导的受体对左心室心肌细胞的影响以及高血压转基因模型心脏中肌膜结合载体系统的作用。与正常血压的啮齿动物相比,在(mREN2)27转基因动物中观察到血管紧张素II(AngII)受体亚型1(AT1R)的mRNA和蛋白质表达显着增加。同时,在高血压啮齿类动物中,AT1R上调,MAS1原癌基因蛋白受体和AngII亚型2受体下调.肌膜Na+-K+-ATP酶的表达有修饰,Na+-Ca2+交换剂,和转基因高血压模型中的肌内质网钙ATP酶。这些观察结果表明,慢性RAAS激活导致受体平衡发生变化,有利于通过修饰膜结合的载体蛋白和血压来增强心脏收缩力和破坏钙处理。该研究提供了对RAAS介导的心脏功能障碍的潜在机制的见解,并强调了在高血压中靶向AngII保护臂的潜在价值。
    The Renin-Angiotensin-Aldosterone System (RAAS) has been implicated in systemic and neurogenic hypertension. The infusion of RAAS inhibitors blunted arterial pressure and efficacy of use-dependent synaptic transmission in sympathetic ganglia. The current investigation aims to elucidate the impact of RAAS-mediated receptors on left ventricular cardiomyocytes and the role of the sarcolemma-bound carrier system in the heart of the hypertensive transgene model. A significant increase in mRNA and the protein expression for angiotensin II (AngII) receptor subtype-1 (AT1R) was observed in (mREN2)27 transgenic compared to the normotensive rodents. Concurrently, there was an upregulation in AT1R and a downregulation in the MAS1 proto-oncogene protein receptor as well as the AngII subtype-2 receptor in hypertensive rodents. There were modifications in the expressions of sarcolemma Na+-K+-ATPase, Na+-Ca2+ exchanger, and Sarcoendoplasmic Reticulum Calcium ATPase in the transgenic hypertensive model. These observations suggest chronic RAAS activation led to a shift in receptor balance favoring augmented cardiac contractility and disruption in calcium handling through modifications of membrane-bound carrier proteins and blood pressure. The study provides insight into mechanisms underlying RAAS-mediated cardiac dysfunction and highlights the potential value of targeting the protective arm of AngII in hypertension.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    3Na或1Ca2与Na/Ca2交换剂(NCX)的连续相互作用导致细胞质和细胞外前庭对膜的相对侧的交替暴露(通路),其中离子诱导的朝外(OF)和朝内(IF)构象状态之间的跃迁驱动运输周期。这里,我们通过使用19F-NMR分析NCX_Mj的去污剂溶解和纳米圆盘重构制剂,研究了OF和IF状态下apo和离子结合物种的亚态种群。19F探针在胞浆和细胞外前庭的进入位置共价连接到半胱氨酸残基。在纳米圆盘重建的(但在洗涤剂溶解的)NCX_Mj中观察到apo和离子结合物种的多个亚状态,这意味着脂质膜环境为多个亚状态群体进行OF/IF交换提供了条件。最重要的是,离子诱导的子状态重分布发生在每个主要(OF或IF)状态中,其中子状态相互转换可以以OF/IF交换为前提。与人口重新分配的巨大变化相反,每个固有状态(OF或IF)内的亚状态群体的总和在添加离子时几乎保持不变。本发现允许进一步阐明离子诱导的构象变化背后的结构动力学模块,这些结构动力学模块决定了膜相对侧离子进入/易位的功能不对称性以及符合生理需求的离子传输速率。
    Consecutive interactions of 3Na+ or 1Ca2+ with the Na+/Ca2+ exchanger (NCX) result in an alternative exposure (access) of the cytosolic and extracellular vestibules to opposite sides of the membrane, where ion-induced transitions between the outward-facing (OF) and inward-facing (IF) conformational states drive a transport cycle. Here, we investigate sub-state populations of apo and ion-bound species in the OF and IF states by analyzing detergent-solubilized and nanodisc-reconstituted preparations of NCX_Mj with 19F-NMR. The 19F probe was covalently attached to the cysteine residues at entry locations of the cytosolic and extracellular vestibules. Multiple sub-states of apo and ion-bound species were observed in nanodisc-reconstituted (but not in detergent-solubilized) NCX_Mj, meaning that the lipid-membrane environment preconditions multiple sub-state populations toward the OF/IF swapping. Most importantly, ion-induced sub-state redistributions occur within each major (OF or IF) state, where sub-state interconversions may precondition the OF/IF swapping. In contrast with large changes in population redistributions, the sum of sub-state populations within each inherent state (OF or IF) remains nearly unchanged upon ion addition. The present findings allow the further elucidation of structure-dynamic modules underlying ion-induced conformational changes that determine a functional asymmetry of ion access/translocation at opposite sides of the membrane and ion transport rates concurring physiological demands.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    钠钙交换蛋白(NCX)广泛表达,并通过介导跨细胞膜的上坡钙流出在细胞钙稳态中起关键作用。细胞内钙通过与两个细胞质钙结合结构域结合来变构调节交换活性,CBD1和CBD2。然而,这些结构域的钙结合亲和力似乎不足以感知生理钙振荡。以前,镁与任一结构域的结合被证明可以调节它们对钙的亲和力,把它带到生理范围内。然而,同时鉴定了CBD2的镁结合位点,CBD1镁位点的身份仍然难以捉摸。这里,使用分子动力学结合差示扫描荧光分析法和突变分析,我们确定了CBD1中的镁结合位点。具体来说,在该结构域的四个钙结合位点(Ca1-Ca4)中,只有Ca1可以以与其游离细胞内浓度相似的亲和力容纳镁。此外,我们的结果提供了对镁调节钙亲和力的机制见解,这允许在整个不同的生理需求中具有足够的NCX活性水平。
    Sodium-calcium exchanger (NCX) proteins are ubiquitously expressed and play a pivotal role in cellular calcium homeostasis by mediating uphill calcium efflux across the cell membrane. Intracellular calcium allosterically regulates the exchange activity by binding to two cytoplasmic calcium-binding domains, CBD1 and CBD2. However, the calcium-binding affinities of these domains are seemingly inadequate to sense physiological calcium oscillations. Previously, magnesium binding to either domain was shown to tune their affinity for calcium, bringing it into the physiological range. However, while the magnesium-binding site of CBD2 was identified, the identity of the CBD1 magnesium site remains elusive. Here, using molecular dynamics in combination with differential scanning fluorimetry and mutational analysis, we pinpoint the magnesium-binding site in CBD1. Specifically, among four calcium-binding sites (Ca1-Ca4) in this domain, only Ca1 can accommodate magnesium with an affinity similar to its free intracellular concentration. Moreover, our results provide mechanistic insights into the modulation of the regulatory calcium affinity by magnesium, which allows an adequate NCX activity level throughout varying physiological needs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们探索了钠-葡萄糖共转运蛋白2抑制剂empagliflozin在横行主动脉缩窄(TAC)后对完整的实验性肥大小鼠心脏的生理作用。术后药物(2-6周)激发导致晚期Na+电流减少,和增加磷酸化(p-)CaMK-II和Nav1.5,但不是总(t)-CaMK-II,和Na+/Ca2+交换表达,确认以前的心肌细胞水平报告。它挽救了TAC引起的超声心动图射血分数和缩短分数的减少,和舒张前后壁增厚。Langendorff灌注心脏的双电压和Ca2光学作图表明,依帕格列净在80%恢复时(APD80)挽救了TAC诱导的动作电位持续时间增加,恢复80%时的Ca2+瞬态峰值信号和持续时间(CaTD80),在常规10Hz刺激期间达到峰值Ca2+(TTP100)和Ca2+衰变常数(Decay30-90)的倍数,和Ca2+瞬时交替循环长度缩短。异丙肾上腺素在假手术和仅TAC心脏中缩短了APD80,在所有组中缩短CaTD80和Decay30-90,但保留TTP100和Ca2瞬时交替。所有组显示相似的APD80,而仅TAC的心脏显示更大的CaTD80,异丙肾上腺素攻击后的异质性。Empagliflozin消除或减少了室性心动过速和室性早搏以及相关的折返传导模式,在异丙肾上腺素激发的TAC手术心脏中,连续爆发起搏发作。Empagliflozin从而挽救TAC诱导的心室肥厚和收缩功能,Ca2+稳态,和完整心脏的致心律失常变化。
    We explored physiological effects of the sodium-glucose co-transporter-2 inhibitor empagliflozin on intact experimentally hypertrophic murine hearts following transverse aortic constriction (TAC). Postoperative drug (2-6 weeks) challenge resulted in reduced late Na+ currents, and increased phosphorylated (p-)CaMK-II and Nav1.5 but not total (t)-CaMK-II, and Na+/Ca2+ exchanger expression, confirming previous cardiomyocyte-level reports. It rescued TAC-induced reductions in echocardiographic ejection fraction and fractional shortening, and diastolic anterior and posterior wall thickening. Dual voltage- and Ca2+-optical mapping of Langendorff-perfused hearts demonstrated that empagliflozin rescued TAC-induced increases in action potential durations at 80% recovery (APD80), Ca2+ transient peak signals and durations at 80% recovery (CaTD80), times to peak Ca2+ (TTP100) and Ca2+ decay constants (Decay30-90) during regular 10-Hz stimulation, and Ca2+ transient alternans with shortening cycle length. Isoproterenol shortened APD80 in sham-operated and TAC-only hearts, shortening CaTD80 and Decay30-90 but sparing TTP100 and Ca2+ transient alternans in all groups. All groups showed similar APD80, and TAC-only hearts showed greater CaTD80, heterogeneities following isoproterenol challenge. Empagliflozin abolished or reduced ventricular tachycardia and premature ventricular contractions and associated re-entrant conduction patterns, in isoproterenol-challenged TAC-operated hearts following successive burst pacing episodes. Empagliflozin thus rescues TAC-induced ventricular hypertrophy and systolic functional, Ca2+ homeostatic, and pro-arrhythmogenic changes in intact hearts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肌膜Ca2+外排途径,Na+-Ca2+-交换剂(NCX)和Ca2+-ATP酶(PMCA),在心肌细胞内Ca2+负荷和Ca2+瞬变的调节中起着至关重要的作用。这些途径在心室心肌细胞的t管和表面膜之间的分布在物种之间变化,并且在人类中不清楚。此外,一些研究表明,这种分布在发育和心脏病期间会发生变化。然而,人心室心肌细胞中NCX和PMCA再分布的影响尚未阐明.在这项研究中,我们的目的是通过使用人心室肌细胞结合t小管的数学模型来解决这一点,二元空间,和肌膜下空间。探讨了NCX和PMCA的t管馏分的各种组合的影响,使用在正常和病理条件下的动物实验中报告的0.2和1之间的值。动作电位持续时间的微小变化(≤2%),但是在与休息和活动期间的人心率相对应的刺激频率下,观察到胞浆Ca2瞬时峰值(高达17%)的显着变化。对模型结果的分析表明,NCX和PMCA的重新分布引起的Ca2瞬时变化主要是由刺激周期舒张期肌膜下间隙和细胞质中Ca2浓度的变化引起的。结果表明,两种转运蛋白在t管和表面膜之间的重新分布有助于人心室心肌细胞在发育和心脏病期间的收缩力变化,并可能促进心律失常的发生。
    The sarcolemmal Ca2+ efflux pathways, Na+-Ca2+-exchanger (NCX) and Ca2+-ATPase (PMCA), play a crucial role in the regulation of intracellular Ca2+ load and Ca2+ transient in cardiomyocytes. The distribution of these pathways between the t-tubular and surface membrane of ventricular cardiomyocytes varies between species and is not clear in human. Moreover, several studies suggest that this distribution changes during the development and heart diseases. However, the consequences of NCX and PMCA redistribution in human ventricular cardiomyocytes have not yet been elucidated. In this study, we aimed to address this point by using a mathematical model of the human ventricular myocyte incorporating t-tubules, dyadic spaces, and subsarcolemmal spaces. Effects of various combinations of t-tubular fractions of NCX and PMCA were explored, using values between 0.2 and 1 as reported in animal experiments under normal and pathological conditions. Small variations in the action potential duration (≤ 2%), but significant changes in the peak value of cytosolic Ca2+ transient (up to 17%) were observed at stimulation frequencies corresponding to the human heart rate at rest and during activity. The analysis of model results revealed that the changes in Ca2+ transient induced by redistribution of NCX and PMCA were mainly caused by alterations in Ca2+ concentrations in the subsarcolemmal spaces and cytosol during the diastolic phase of the stimulation cycle. The results suggest that redistribution of both transporters between the t-tubular and surface membranes contributes to changes in contractility in human ventricular cardiomyocytes during their development and heart disease and may promote arrhythmogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:肝Ca2+信号已被确定为驱动糖异生的关键因子。线粒体参与激素诱导的Ca2+信号及其对代谢活性的贡献仍然存在,然而,知之甚少。此外,控制线粒体Ca2+外排信号的分子机制仍未解决。本研究探讨了Na+/Ca2+交换剂的作用,NCLX,在调节肝脏线粒体Ca2+流出中,并检查其在激素肝Ca2信号传导中的生理意义,糖异生,和线粒体生物能学。
    方法:来自AAV介导的条件性肝特异性和总线粒体Na/Ca2交换剂的原代小鼠肝细胞,NCLX,敲除(KO)小鼠模型用于荧光监测培养的肝细胞中嘌呤能和胰高血糖素/加压素依赖性线粒体和胞质肝Ca2反应。分离的肝线粒体和透化的原代肝细胞用于分析Ca2流出的离子依赖性。利用条件性肝特异性NCLXKO模型,首先通过体内监测禁食小鼠的葡萄糖水平,并在监测血糖的同时对禁食小鼠进行丙酮酸耐受试验,评估糖异生率。此外,通过葡萄糖氧化酶测定法和海马呼吸测定法,在体外评估了两种基因型的培养原代肝细胞的胰高血糖素依赖性葡萄糖产生和细胞生物能量学,分别。
    结果:对来自NCLXKO和WT小鼠的分离的肝线粒体和培养的原代肝细胞中Ca2+反应的分析显示,NCLX是肝细胞中线粒体钙挤出的主要机制。然后,我们确定了NCLX在胰高血糖素和加压素诱导的Ca2振荡中的作用。与以前的研究一致,胰高血糖素和加压素触发WT肝细胞中的Ca2+振荡,然而,NCLX的缺失导致线粒体的选择性消除,但不是细胞溶质,Ca2+振荡或IP3R1表达水平,强调NCLX在线粒体Ca2+调节中的关键作用。随后的体内研究显示,肝脏NCLX在糖异生中的作用,与禁食时保持血糖水平正常的WT小鼠相反,条件性肝特异性NCLXKO小鼠表现出更快的葡萄糖水平下降,变得低血糖,并且在禁食条件下挑战提供时丙酮酸向葡萄糖的转化受损。同时在体外评估显示受损的胰高血糖素依赖性葡萄糖生产和受损的生物能量在KO肝细胞,从而强调NCLX对肝脏葡萄糖代谢的显著贡献。
    结论:研究结果表明,NCLX是肝细胞中主要的Ca2+流出机制。NCLX对于调节激素诱导的线粒体Ca2+振荡是必不可少的,线粒体代谢和肝糖异生的维持。
    OBJECTIVE: Hepatic Ca2+ signaling has been identified as a crucial key factor in driving gluconeogenesis. The involvement of mitochondria in hormone-induced Ca2+ signaling and their contribution to metabolic activity remain, however, poorly understood. Moreover, the molecular mechanism governing the mitochondrial Ca2+ efflux signaling remains unresolved. This study investigates the role of the Na+/Ca2+ exchanger, NCLX, in modulating hepatic mitochondrial Ca2+ efflux, and examines its physiological significance in hormonal hepatic Ca2+ signaling, gluconeogenesis, and mitochondrial bioenergetics.
    METHODS: Primary mouse hepatocytes from both an AAV-mediated conditional hepatic-specific and a total mitochondrial Na+/Ca2+ exchanger, NCLX, knockout (KO) mouse models were employed for fluorescent monitoring of purinergic and glucagon/vasopressin-dependent mitochondrial and cytosolic hepatic Ca2+ responses in cultured hepatocytes. Isolated liver mitochondria and permeabilized primary hepatocytes were used to analyze the ion-dependence of Ca2+ efflux. Utilizing the conditional hepatic-specific NCLX KO model, the rate of gluconeogenesis was assessed by first monitoring glucose levels in fasted mice, and subsequently subjecting the mice to a pyruvate tolerance test while monitoring their blood glucose. Additionally, cultured primary hepatocytes from both genotypes were assessed in vitro for glucagon-dependent glucose production and cellular bioenergetics through glucose oxidase assay and Seahorse respirometry, respectively.
    RESULTS: Analysis of Ca2+ responses in isolated liver mitochondria and cultured primary hepatocytes from NCLX KO versus WT mice showed that NCLX serves as the principal mechanism for mitochondrial calcium extrusion in hepatocytes. We then determined the role of NCLX in glucagon and vasopressin-induced Ca2+ oscillations. Consistent with previous studies, glucagon and vasopressin triggered Ca2+ oscillations in WT hepatocytes, however, the deletion of NCLX resulted in selective elimination of mitochondrial, but not cytosolic, Ca2+ oscillations, underscoring NCLX\'s pivotal role in mitochondrial Ca2+ regulation. Subsequent in vivo investigation for hepatic NCLX role in gluconeogenesis revealed that, as opposed to WT mice which maintained normoglycemic blood glucose levels when fasted, conditional hepatic-specific NCLX KO mice exhibited a faster drop in glucose levels, becoming hypoglycemic. Furthermore, KO mice showed deficient conversion of pyruvate to glucose when challenged under fasting conditions. Concurrent in vitro assessments showed impaired glucagon-dependent glucose production and compromised bioenergetics in KO hepatocytes, thereby underscoring NCLX\'s significant contribution to hepatic glucose metabolism.
    CONCLUSIONS: The study findings demonstrate that NCLX acts as the primary Ca2+ efflux mechanism in hepatocytes. NCLX is indispensable for regulating hormone-induced mitochondrial Ca2+ oscillations, mitochondrial metabolism, and sustenance of hepatic gluconeogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    高钠血症的体征和症状在很大程度上表明中枢神经系统功能障碍。急性高钠血症可引起类似于渗透性脱髓鞘综合征(ODS)的脱髓鞘病变。我们先前已经证明小胶质细胞在ODS病变中积累,而米诺环素通过抑制小胶质细胞活化来保护ODS。然而,钠浓度快速升高对小胶质细胞的直接影响在很大程度上是未知的。此外,慢性高钠血症对小胶质细胞的影响仍然难以捉摸。这里,我们研究了急性(6或24小时)和慢性(细胞外钠浓度至少7天逐渐增加)高钠浓度对小胶质细胞的影响,BV-2.我们发现,急性和慢性高钠浓度都会增加NOS2的表达和一氧化氮(NO)的产生。我们还证明,高钠浓度会增加活化T细胞核因子5(NFAT5)的表达。此外,NFAT5敲低抑制NOS2表达和NO产生。我们还证明,高钠浓度降低细胞内Ca2+浓度和Na+/Ca2+交换剂的抑制剂,NCX,抑制了高钠浓度诱导的细胞内Ca2浓度,NOS2表达和NO产生的降低。此外,米诺环素抑制高钠浓度诱导的NOS2表达和NO产生。这些体外数据表明,响应于高钠浓度的小胶质细胞活性受到NFAT5和Ca2通过NCX流出的调节,并受到米诺环素的抑制。
    Signs and symptoms of hypernatremia largely indicate central nervous system dysfunction. Acute hypernatremia can cause demyelinating lesions similar to that observed in osmotic demyelination syndrome (ODS). We have previously demonstrated that microglia accumulate in ODS lesions and minocycline protects against ODS by inhibiting microglial activation. However, the direct effect of rapid rise in the sodium concentrations on microglia is largely unknown. In addition, the effect of chronic hypernatremia on microglia also remains elusive. Here, we investigated the effects of acute (6 or 24 h) and chronic (the extracellular sodium concentration was increased gradually for at least 7 days) high sodium concentrations on microglia using the microglial cell line, BV-2. We found that both acute and chronic high sodium concentrations increase NOS2 expression and nitric oxide (NO) production. We also demonstrated that the expression of nuclear factor of activated T-cells-5 (NFAT5) is increased by high sodium concentrations. Furthermore, NFAT5 knockdown suppressed NOS2 expression and NO production. We also demonstrated that high sodium concentrations decreased intracellular Ca2+ concentration and an inhibitor of Na+/Ca2+ exchanger, NCX, suppressed a decrease in intracellular Ca2+ concentrations and NOS2 expression and NO production induced by high sodium concentrations. Furthermore, minocycline inhibited NOS2 expression and NO production induced by high sodium concentrations. These in vitro data suggest that microglial activity in response to high sodium concentrations is regulated by NFAT5 and Ca2+ efflux through NCX and is suppressed by minocycline.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基质囊泡(MV)为矿化成骨细胞内的无定形羟基磷灰石(HA)形成提供初始位点。尽管Na/Ca2交换子同工型3(NCX3,SLC8A3)被认为是主要的Ca2转运蛋白,负责将Ca2从成骨细胞挤出到钙化骨基质中,尚未研究其在MV中的存在和功能作用。在这项研究中,我们研究了NCX3参与MV介导的矿化过程及其对骨形成的影响。使用分化的MC3T3-E1细胞,我们证明,NCX3敲除在这些细胞中导致Ca2+沉积的显著减少,由于减少了Ca2+进入MV,导致矿化受损。因此,MV促进细胞外HA形成的能力减弱。此外,从NCX3缺陷小鼠(NCX3-/-)分离的原代成骨细胞表现出降低的矿化功效,而对破骨细胞活性没有任何影响。为了验证这个体外发现,μCT分析显示两种性别的NCX3-/-小鼠的小梁骨矿物质密度均大幅下降,因此支持NCX3在促进Ca2+摄取进入MV以启动成骨细胞介导的矿化中的关键作用。还发现NCX3表达是体外和体内炎症介质下调的靶标。这种对NCX3在MV中的功能作用的新认识为旨在增强骨矿化和治疗矿化相关疾病的治疗干预开辟了新的途径。
    Matrix vesicles (MVs) provide the initial site for amorphous hydroxyapatite (HA) formation within mineralizing osteoblasts. Although Na+/Ca2+ exchanger isoform-3 (NCX3, SLC8A3) was presumed to function as major Ca2+ transporter responsible for Ca2+ extrusion out of osteoblast into the calcifying bone matrix, its presence and functional role in MVs have not been investigated. In this study, we investigated the involvement of NCX3 in MV-mediated mineralization process and its impact on bone formation. Using differentiated MC3T3-E1 cells, we demonstrated that NCX3 knockout in these cells resulted in a significant reduction of Ca2+ deposition due to reduced Ca2+ entry within the MVs, leading to impaired mineralization. Consequently, the capacity of MVs to promote extracellular HA formation was diminished. Moreover, primary osteoblast isolated from NCX3 deficient mice (NCX3-/-) exhibits reduced mineralization efficacy without any effect on osteoclast activity. To validate this in vitro finding, μCT analysis revealed a substantial decrease in trabecular bone mineral density in both genders of NCX3-/- mice, thus supporting the critical role of NCX3 in facilitating Ca2+ uptake into the MVs to initiate osteoblast-mediated mineralization. NCX3 expression was also found to be the target of downregulation by inflammatory mediators in vitro and in vivo. This newfound understanding of NCX3\'s functional role in MVs opens new avenues for therapeutic interventions aimed at enhancing bone mineralization and treating mineralization-related disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞内钠的升高会对线粒体代谢产生不利影响,并且是心力衰竭的常见特征。在Langendorff灌注的大鼠心脏中,使用Na/KATPase抑制剂ouabain和肌球蛋白解偶联剂对氨基blebistatin维持恒定的能量需求,评估了急性Na诱导的代谢变化的可逆性。升高的Nai降低了Gibb的ATP水解自由能,增加TCA循环中间体琥珀酸酯和富马酸酯,降低复合物I的ETC活性,II和III,并导致CoQ的氧化还原转变为CoQH2,这在将Nai降低至基线水平时全部逆转。尽管组织氧合正常,但仍观察到HIF-1α的假性缺氧和稳定。用CGP-37517抑制线粒体Na/Ca交换或用线粒体ROS清除剂MitoQ治疗可防止Nai升高期间的代谢改变。升高的Nai在代谢和功能变化中起着可逆的作用,并且是纠正心力衰竭中代谢功能障碍的新治疗靶标。
    Elevated intracellular sodium Nai adversely affects mitochondrial metabolism and is a common feature of heart failure. The reversibility of acute Na induced metabolic changes is evaluated in Langendorff perfused rat hearts using the Na/K ATPase inhibitor ouabain and the myosin-uncoupler para-aminoblebbistatin to maintain constant energetic demand. Elevated Nai decreases Gibb\'s free energy of ATP hydrolysis, increases the TCA cycle intermediates succinate and fumarate, decreases ETC activity at Complexes I, II and III, and causes a redox shift of CoQ to CoQH2, which are all reversed on lowering Nai to baseline levels. Pseudo hypoxia and stabilization of HIF-1α is observed despite normal tissue oxygenation. Inhibition of mitochondrial Na/Ca-exchange with CGP-37517 or treatment with the mitochondrial ROS scavenger MitoQ prevents the metabolic alterations during Nai elevation. Elevated Nai plays a reversible role in the metabolic and functional changes and is a novel therapeutic target to correct metabolic dysfunction in heart failure.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号