关键词: Programmable mechanical instabilities branching morphogenesis buckling clefting creases morphodynamics passive forces wrinkling

来  源:   DOI:10.1016/j.cobme.2018.03.007   PDF(Pubmed)

Abstract:
The architectural features of branching morphogenesis demonstrate exquisite reproducibility among various organs and species despite the unique functionality and biochemical differences of their microenvironment. The regulatory networks that drive branching morphogenesis employ cell-generated and passive mechanical forces, which integrate extracellular signals from the microenvironment into morphogenetic movements. Cell-generated forces function locally to remodel the extracellular matrix (ECM) and control interactions among neighboring cells. Passive mechanical forces are the product of in situ mechanical instabilities that trigger out-of-plane buckling and clefting deformations of adjacent tissues. Many of the molecular and physical signals that underlie buckling and clefting morphogenesis remain unclear and require new experimental strategies to be uncovered. Here, we highlight soft material systems that have been engineered to display programmable buckles and creases. Using synthetic materials to model physicochemical and spatiotemporal features of buckling and clefting morphogenesis might facilitate our understanding of the physical mechanisms that drive branching morphogenesis across different organs and species.
摘要:
尽管其微环境具有独特的功能和生化差异,但分支形态发生的结构特征在各种器官和物种之间仍具有出色的可重复性。驱动分支形态发生的调节网络采用细胞产生的和被动的机械力,将来自微环境的细胞外信号整合到形态发生运动中。细胞产生的力在局部起作用以重塑细胞外基质(ECM)并控制相邻细胞之间的相互作用。被动机械力是原位机械不稳定性的产物,其触发相邻组织的平面外屈曲和裂开变形。屈曲和裂开形态发生背后的许多分子和物理信号仍不清楚,需要发现新的实验策略。这里,我们突出的软材料系统,已被设计为显示可编程的扣和折痕。使用合成材料对屈曲和裂开形态发生的物理化学和时空特征进行建模,可能有助于我们理解驱动不同器官和物种分支形态发生的物理机制。
公众号