viroplasm

病毒质
  • 文章类型: Journal Article
    轮状病毒(RV)分为9种,A-D和F-J,物种A是研究最多的。在物种A(RVA)的轮状病毒中,复制发生在病毒质中,它们是由主要构件蛋白NSP5、NSP2和VP2组成的胞浆球状内含物。NSP5与NSP2或VP2在未感染细胞中的共表达导致病毒质样结构(VLSs)的形成。尽管在形态上与病毒质相同,VLSs不产生病毒后代,但可作为研究复杂病毒质的极好工具。由于缺乏特异性抗体和合适的细胞培养系统,关于非RVA病毒质存在知识空白。在这项研究中,我们探索了来自非RVA物种的NSP5和NSP2形成VLS的能力。这两种蛋白质的共表达导致RV物种A中的球状VLS,B,D,F,G,而我,而RVC形成丝状VLS。RV物种H和J的NSP5和NSP2的共表达没有导致VLS形成。有趣的是,所有RV物种的NSP5自低聚,有了有序的C端区域,被称为尾巴,对于RV种类A-C和G-J的自低聚是必需的。除了RVJ的NSP5,所有NSP5都与它们的同源NSP2相互作用。我们还发现,物种间VLS是在密切相关的RV物种B与G和D与F之间形成的。当NSP5RVH和RVJ的尾部被来自RVA的NSP5的尾部取代并与它们各自的NSP2共表达时,形成来自RVH和RVJ的VLS。
    目的:轮状病毒(RV)分为9种,A-D和F-J,感染哺乳动物和鸟类。由于缺乏研究工具,关于RV复制的所有累积知识是基于RV种类A(RVA)。RV复制区室是球形胞质结构,称为病毒质,仅在RV物种A中鉴定出,在这项研究中,我们检查了病毒质样结构(VLSs)的形成,NSP5与NSP2共表达在RV物种A到J。B,D,F,G,而我,而RV物种C形成丝状结构。RV物种H和J不与其同源NSP5和NSP2形成VLS。类似于RVA,NSP5在所有RV物种中自我寡聚化,这是VLS形成所需的。本研究提供了非RVA复制机制的基本知识,这可能有助于制定策略来阻止跨RV物种的病毒感染。
    Rotaviruses (RVs) are classified into nine species, A-D and F-J, with species A being the most studied. In rotavirus of species A (RVA), replication occurs in viroplasms, which are cytosolic globular inclusions composed of main building block proteins NSP5, NSP2, and VP2. The co-expression of NSP5 with either NSP2 or VP2 in uninfected cells leads to the formation of viroplasm-like structures (VLSs). Although morphologically identical to viroplasms, VLSs do not produce viral progeny but serve as excellent tools for studying complex viroplasms. A knowledge gap exists regarding non-RVA viroplasms due to the lack of specific antibodies and suitable cell culture systems. In this study, we explored the ability of NSP5 and NSP2 from non-RVA species to form VLSs. The co-expression of these two proteins led to globular VLSs in RV species A, B, D, F, G, and I, while RVC formed filamentous VLSs. The co-expression of NSP5 and NSP2 of RV species H and J did not result in VLS formation. Interestingly, NSP5 of all RV species self-oligomerizes, with the ordered C-terminal region, termed the tail, being necessary for self-oligomerization of RV species A-C and G-J. Except for NSP5 from RVJ, all NSP5 interacted with their cognate NSP2. We also found that interspecies VLS are formed between closely related RV species B with G and D with F. Additionally, VLS from RVH and RVJ formed when the tail of NSP5 RVH and RVJ was replaced by the tail of NSP5 from RVA and co-expressed with their respective NSP2.
    OBJECTIVE: Rotaviruses (RVs) are classified into nine species, A-D and F-J, infecting mammals and birds. Due to the lack of research tools, all cumulative knowledge on RV replication is based on RV species A (RVA). The RV replication compartments are globular cytosolic structures named viroplasms, which have only been identified in RV species A. In this study, we examined the formation of viroplasm-like structures (VLSs) by the co-expression of NSP5 with NSP2 across RV species A to J. Globular VLSs formed for RV species A, B, D, F, G, and I, while RV species C formed filamentous structures. The RV species H and J did not form VLS with their cognates NSP5 and NSP2. Similar to RVA, NSP5 self-oligomerizes in all RV species, which is required for VLS formation. This study provides basic knowledge of the non-RVA replication mechanisms, which could help develop strategies to halt virus infection across RV species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    轮状病毒(RV)是11个分段的,双链(ds)RNA病毒和人类和其他动物急性胃肠炎的重要原因。早期的RV粒子组装是一个多步骤的过程,包括分类,与衣壳形态发生密切相关的11个基因组片段的包装和复制。这个过程发生在病毒诱导的内部,胞质,称为病毒质的无膜细胞器。虽然许多病毒和细胞蛋白在早期RV组装过程中发挥作用,八聚体非结构蛋白2(NSP2)已成为病毒复制周期这一关键阶段的主要协调器。NSP2对于病毒质生物发生以及支持11种病毒基因组片段的选择性RNA-RNA相互作用至关重要。此外,NSP2相关的酶活性可能用于维持病毒基因组复制过程中使用的核苷酸库,与早期粒子组装同时发生的过程。这篇综述文章的目的是总结有关结构的可用数据,RVNSP2的功能和相互作用,同时也引起了对该领域重要未解决问题的关注。
    Rotaviruses (RVs) are 11-segmented, double-stranded (ds) RNA viruses and important causes of acute gastroenteritis in humans and other animal species. Early RV particle assembly is a multi-step process that includes the assortment, packaging and replication of the 11 genome segments in close connection with capsid morphogenesis. This process occurs inside virally induced, cytosolic, membrane-less organelles called viroplasms. While many viral and cellular proteins play roles during early RV assembly, the octameric nonstructural protein 2 (NSP2) has emerged as a master orchestrator of this key stage of the viral replication cycle. NSP2 is critical for viroplasm biogenesis as well as for the selective RNA-RNA interactions that underpin the assortment of 11 viral genome segments. Moreover, NSP2\'s associated enzymatic activities might serve to maintain nucleotide pools for use during viral genome replication, a process that is concurrent with early particle assembly. The goal of this review article is to summarize the available data about the structures, functions and interactions of RV NSP2 while also drawing attention to important unanswered questions in the field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    轮状病毒(RV)在病毒质内复制,具有液-液相特性的无膜电子致密球状胞质包裹体。在这些结构中发生病毒转录,复制,并将病毒基因组包装在新组装的双层颗粒中。病毒质由病毒蛋白(NSP2,NSP5,NSP4,VP1,VP2,VP3和VP6)组成,单链和双链病毒RNA,和宿主组件,如微管,perilipin-1和伴侣蛋白。的形成,聚结,维护,病毒质的核周定位依赖于它们与细胞骨架的关联。涉及微管和驱动蛋白Eg5和动力蛋白分子马达的稳定微管网络与NSP5,NSP2和VP2相关,促进了动态过程,例如病毒质聚结和核周定位。关键的翻译后修改,特别是RV蛋白NSP5和NSP2的磷酸化事件在协调这些相互作用中起关键作用。肌动蛋白丝也有贡献,通过可溶性胞浆VP4与肌动蛋白和分子运动肌球蛋白的结合来触发病毒质的形成。这篇综述探讨了对RV复制的不断发展的理解,强调病毒质形成所必需的宿主要求,并强调它们在宿主细胞内的动态相互作用。
    Rotavirus (RV) replicates within viroplasms, membraneless electron-dense globular cytosolic inclusions with liquid-liquid phase properties. In these structures occur the virus transcription, replication, and packaging of the virus genome in newly assembled double-layered particles. The viroplasms are composed of virus proteins (NSP2, NSP5, NSP4, VP1, VP2, VP3, and VP6), single- and double-stranded virus RNAs, and host components such as microtubules, perilipin-1, and chaperonins. The formation, coalescence, maintenance, and perinuclear localization of viroplasms rely on their association with the cytoskeleton. A stabilized microtubule network involving microtubules and kinesin Eg5 and dynein molecular motors is associated with NSP5, NSP2, and VP2, facilitating dynamic processes such as viroplasm coalescence and perinuclear localization. Key post-translation modifications, particularly phosphorylation events of RV proteins NSP5 and NSP2, play pivotal roles in orchestrating these interactions. Actin filaments also contribute, triggering the formation of the viroplasms through the association of soluble cytosolic VP4 with actin and the molecular motor myosin. This review explores the evolving understanding of RV replication, emphasizing the host requirements essential for viroplasm formation and highlighting their dynamic interplay within the host cell.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    轮状病毒(RV)复制发生在病毒质中,胞质内含物,允许病毒基因组片段的合成及其在核心外壳中的衣壳化,然后添加第二层病毒体。病毒质由几种病毒蛋白组成,包括作为主要构建块的NSP5。微管,脂滴,和miRNA-7是在病毒质中招募的宿主成分之一。我们通过对表达NSP5-BiolD2的RV感染细胞的裂解物进行下拉测定,研究了RV蛋白与病毒质宿主成分之间的相互作用。随后的串联质谱鉴定了无尾复合物多肽I环复合物(TRiC)的所有八个亚基,一种负责折叠至少10%的胞浆蛋白的细胞伴侣蛋白。我们确认的发现表明,TRiC被带入病毒质并包裹在新形成的双层颗粒周围。TRiC的化学抑制及其亚基的沉默大大降低了病毒后代的产生。通过直接RNA测序,我们表明,TRiC是关键的RV复制通过控制dsRNA基因组片段的合成,特别是负义单链RNA。重要的是,低温电子显微镜分析显示TRiC抑制导致缺乏基因组片段和聚合酶复合物(VP1/VP3)的缺陷病毒颗粒。此外,TRiC与VP2和NSP5相关联,但不与VP1相关联。此外,VP2被证明对于在病毒质中招募TRiC并保持其球状形态至关重要。这项研究强调了TRiC在病毒质形成和促进病毒体组装中的重要作用。
    目的:轮状病毒的复制发生在称为病毒质的胞浆包涵体中。在这些内含物中,将不同的11个双链RNA基因组片段共同包装,以在新产生的病毒颗粒中完成基因组.在这项研究中,我们首次显示无尾复合物多肽I环复合物(TRiC),负责至少10%的胞浆蛋白折叠的细胞伴侣蛋白,是病毒质的组成部分,并且是合成病毒负义单链RNA所必需的。具体来说,TRiC与参与RNA复制的辅因子NSP5和VP2相关。我们的研究为当前的轮状病毒复制模型增加了一个新的组成部分,其中TRiC被招募到病毒质中以辅助复制。
    Rotavirus (RV) replication takes place in the viroplasms, cytosolic inclusions that allow the synthesis of virus genome segments and their encapsidation in the core shell, followed by the addition of the second layer of the virion. The viroplasms are composed of several viral proteins, including NSP5, which serves as the main building block. Microtubules, lipid droplets, and miRNA-7 are among the host components recruited in viroplasms. We investigated the interaction between RV proteins and host components of the viroplasms by performing a pull-down assay of lysates from RV-infected cells expressing NSP5-BiolD2. Subsequent tandem mass spectrometry identified all eight subunits of the tailless complex polypeptide I ring complex (TRiC), a cellular chaperonin responsible for folding at least 10% of the cytosolic proteins. Our confirmed findings reveal that TRiC is brought into viroplasms and wraps around newly formed double-layered particles. Chemical inhibition of TRiC and silencing of its subunits drastically reduced virus progeny production. Through direct RNA sequencing, we show that TRiC is critical for RV replication by controlling dsRNA genome segment synthesis, particularly negative-sense single-stranded RNA. Importantly, cryo-electron microscopy analysis shows that TRiC inhibition results in defective virus particles lacking genome segments and polymerase complex (VP1/VP3). Moreover, TRiC associates with VP2 and NSP5 but not with VP1. Also, VP2 is shown to be essential for recruiting TRiC in viroplasms and preserving their globular morphology. This study highlights the essential role of TRiC in viroplasm formation and in facilitating virion assembly during the RV life cycle.
    OBJECTIVE: The replication of rotavirus takes place in cytosolic inclusions termed viroplasms. In these inclusions, the distinct 11 double-stranded RNA genome segments are co-packaged to complete a genome in newly generated virus particles. In this study, we show for the first time that the tailless complex polypeptide I ring complex (TRiC), a cellular chaperonin responsible for the folding of at least 10% of the cytosolic proteins, is a component of viroplasms and is required for the synthesis of the viral negative-sense single-stranded RNA. Specifically, TRiC associates with NSP5 and VP2, the cofactor involved in RNA replication. Our study adds a new component to the current model of rotavirus replication, where TRiC is recruited to viroplasms to assist replication.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    胃肠炎是全球婴幼儿死亡的主要原因之一,轮状病毒(RV)每年在婴儿和儿童中导致约2.58亿次腹泻和约128,000例死亡。RV诱导的导致腹泻的机制尚不完全清楚,但是吸收不良是一个促成因素。RV通过诱导脂滴(LD)形成作为称为病毒质的复制工厂的平台来改变细胞脂质代谢。尚未确定LD形成与胃肠炎之间的联系。我们发现二酰基甘油O-酰基转移酶1(DGAT1),LD生物生成所需的三酰基甘油合成的末端步骤,在RV感染的细胞中通过蛋白酶体介导的机制降解。RV感染的DGAT1沉默的细胞显示每个细胞的LD相关病毒质的数量较早和增加,转化为病毒产量的四倍至五倍增加(P<0.05)。有趣的是,儿童DGAT1缺乏与腹泻有关,这是由于关键离子转运蛋白向肠上皮细胞顶端刷状边界的运输改变。对RV感染的细胞和DGAT1-/-人肠类肠(HIE)的共聚焦显微镜和免疫印迹分析显示营养转运蛋白的表达减少,离子输送器,紧密连接蛋白,和细胞骨架蛋白。DGAT1-/-HIE中磷酸化-eIF2α(真核起始因子2α)增加,和RV感染的细胞,表明了一种吸收不良腹泻的机制,即抑制对营养消化和肠道吸收至关重要的细胞蛋白质的翻译。我们的研究阐明了RV诱导的DGAT1缺乏通过蛋白质降解介导吸收不良腹泻的病理生理机制,以及对脂质代谢的作用,在胃肠炎的发病机制中。
    Gastroenteritis is among the leading causes of mortality globally in infants and young children, with rotavirus (RV) causing ~258 million episodes of diarrhea and ~128,000 deaths annually in infants and children. RV-induced mechanisms that result in diarrhea are not completely understood, but malabsorption is a contributing factor. RV alters cellular lipid metabolism by inducing lipid droplet (LD) formation as a platform for replication factories named viroplasms. A link between LD formation and gastroenteritis has not been identified. We found that diacylglycerol O-acyltransferase 1 (DGAT1), the terminal step in triacylglycerol synthesis required for LD biogenesis, is degraded in RV-infected cells by a proteasome-mediated mechanism. RV-infected DGAT1-silenced cells show earlier and increased numbers of LD-associated viroplasms per cell that translate into a fourfold-to-fivefold increase in viral yield (P < 0.05). Interestingly, DGAT1 deficiency in children is associated with diarrhea due to altered trafficking of key ion transporters to the apical brush border of enterocytes. Confocal microscopy and immunoblot analyses of RV-infected cells and DGAT1-/- human intestinal enteroids (HIEs) show a decrease in expression of nutrient transporters, ion transporters, tight junctional proteins, and cytoskeletal proteins. Increased phospho-eIF2α (eukaryotic initiation factor 2 alpha) in DGAT1-/- HIEs, and RV-infected cells, indicates a mechanism for malabsorptive diarrhea, namely inhibition of translation of cellular proteins critical for nutrient digestion and intestinal absorption. Our study elucidates a pathophysiological mechanism of RV-induced DGAT1 deficiency by protein degradation that mediates malabsorptive diarrhea, as well as a role for lipid metabolism, in the pathogenesis of gastroenteritis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    相分离已成为组织病毒和细胞无膜细胞器的基本原理。尽管这些亚细胞区室已经被认识了几十年,它们的生物发生和调节机制知之甚少。这里,我们研究了在植物弹状病毒感染过程中诱导的无膜包涵体(IBs)的形成,番茄黄斑驳相关病毒(TYMaV)。我们产生了编码荧光标记的IB组成蛋白的重组TYMaV,并采用活细胞成像来表征感染的本氏烟草细胞中病毒IBs的细胞内动力学和成熟。我们表明TYMaVIB是相分离的生物分子缩合物,并且病毒核蛋白和磷蛋白是体内和体外IB形成所需的最低限度。TYMaVIB沿着微丝移动,可能是通过将病毒磷蛋白锚定到肌球蛋白XIs。此外,微丝的药理破坏或肌球蛋白XI功能的抑制抑制IB运动,导致IB生长停滞和病毒复制效率低下。我们的研究将相分离确立为驱动液体病毒工厂形成的过程,并强调细胞骨架系统在调节冷凝物成熟动力学中的作用。
    Phase separation has emerged as a fundamental principle for organizing viral and cellular membraneless organelles. Although these subcellular compartments have been recognized for decades, their biogenesis and mechanisms of regulation are poorly understood. Here, we investigate the formation of membraneless inclusion bodies (IBs) induced during the infection of a plant rhabdovirus, tomato yellow mottle-associated virus (TYMaV). We generated recombinant TYMaV encoding a fluorescently labeled IB constituent protein and employed live-cell imaging to characterize the intracellular dynamics and maturation of viral IBs in infected Nicotiana benthamiana cells. We show that TYMaV IBs are phase-separated biomolecular condensates and that viral nucleoprotein and phosphoprotein are minimally required for IB formation in vivo and in vitro. TYMaV IBs move along the microfilaments, likely through the anchoring of viral phosphoprotein to myosin XIs. Furthermore, pharmacological disruption of microfilaments or inhibition of myosin XI functions suppresses IB motility, resulting in arrested IB growth and inefficient virus replication. Our study establishes phase separation as a process driving the formation of liquid viral factories and emphasizes the role of the cytoskeletal system in regulating the dynamics of condensate maturation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    禽(原)呼肠孤病毒(ARV),属于呼肠孤病毒科,是一种主要的家禽病原体,是鸡病毒性腱鞘炎和慢性呼吸道疾病的病原体。ARV在细胞质内含物中复制,所谓的病毒工厂,通过相分离形成,因此属于更广泛的生物缩合物。这里,我们评估了不同的光学成像方法,这些方法已经开发或适应了地层,病毒工厂的流动性和组成,并将其与完善的透射电子显微镜和电子断层扫描获得的互补结构信息进行比较。首先描述了通过成像在细胞中建立和跟踪病毒感染的分子和细胞生物学方面。然后,我们证明了光漂白后荧光恢复的广域版本是测量移动病毒工厂流动性的有效工具。一种新技术,全方位相显微镜,然后用于三维活细胞中病毒工厂形成的成像。感染细胞的共聚焦拉曼显微镜为图像的无标记分割提供了“化学”对比,并解决了有关病毒工厂和其他生物凝聚物中生物分子浓度的重要问题。光学成像由电子显微镜和层析成像补充,提供更高分辨率的结构细节,包括三维细胞环境中单个病毒体的可视化。
    Avian (ortho)reovirus (ARV), which belongs to Reoviridae family, is a major domestic fowl pathogen and is the causative agent of viral tenosynovitis and chronic respiratory disease in chicken. ARV replicates within cytoplasmic inclusions, so-called viral factories, that form by phase separation and thus belong to a wider class of biological condensates. Here, we evaluate different optical imaging methods that have been developed or adapted to follow formation, fluidity and composition of viral factories and compare them with the complementary structural information obtained by well-established transmission electron microscopy and electron tomography. The molecular and cellular biology aspects for setting up and following virus infection in cells by imaging are described first. We then demonstrate that a wide-field version of fluorescence recovery after photobleaching is an effective tool to measure fluidity of mobile viral factories. A new technique, holotomographic phase microscopy, is then used for imaging of viral factory formation in live cells in three dimensions. Confocal Raman microscopy of infected cells provides \"chemical\" contrast for label-free segmentation of images and addresses important questions about biomolecular concentrations within viral factories and other biological condensates. Optical imaging is complemented by electron microscopy and tomography which supply higher resolution structural detail, including visualization of individual virions within the three-dimensional cellular context.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    斐济病毒在涉及RNA-RNA和RNA-蛋白质相互作用的过程中复制和包装它们的基因组。这里,我们证明maldeRíoCuarto病毒(MRCV)的P9-1主要病毒质蛋白的24个C端残基(C臂)是其多聚化和病毒质样结构形成所必需的。使用综合结构方法,发现C臂对于P9-1二聚体组装是可有可无的,但对于二聚体的五聚体和六聚体(十聚体和十二聚体)的形成至关重要,这有利于RNA结合。虽然P9-1和P9-1ΔC臂催化ATP具有相似的活性,仅在全长蛋白质中检测到RNA刺激的ATPase活性,表明ATP催化位点和(do)十聚体组装体中变构RNA结合位点之间的C臂介导的相互作用。预测了在十聚体中结合磷酸部分的更强偏好,表明在这种结构构象中,RNA对ATPase活性的变构调节是有利的。我们的工作揭示了斐济病毒主要病毒质蛋白的结构多功能性,并为其作用机制提供线索。重要性RíoCuarto病毒(MRCV)在阿根廷引起重要的玉米病。MRCV在几种禾本科植物和飞虱载体中复制。病毒工厂,也称为病毒质,已经在动物体内进行了详细的研究。这项工作揭示了MRCV的主要病毒质蛋白形成了以前未识别的结构排列,并提供了证据表明它可能同时采用两个不同的四元组装体。此外,我们的工作揭示了ATP和RNA结合位点之间的变构通讯,这在多聚排列中是有利的.我们的结果有助于理解植物的病毒质结构和功能,并为疾病控制的抗病毒策略的设计铺平道路。
    Fijiviruses replicate and package their genomes within viroplasms in a process involving RNA-RNA and RNA-protein interactions. Here, we demonstrate that the 24 C-terminal residues (C-arm) of the P9-1 major viroplasm protein of the mal de Río Cuarto virus (MRCV) are required for its multimerization and the formation of viroplasm-like structures. Using an integrative structural approach, the C-arm was found to be dispensable for P9-1 dimer assembly but essential for the formation of pentamers and hexamers of dimers (decamers and dodecamers), which favored RNA binding. Although both P9-1 and P9-1ΔC-arm catalyzed ATP with similar activities, an RNA-stimulated ATPase activity was only detected in the full-length protein, indicating a C-arm-mediated interaction between the ATP catalytic site and the allosteric RNA binding sites in the (do)decameric assemblies. A stronger preference to bind phosphate moieties in the decamer was predicted, suggesting that the allosteric modulation of ATPase activity by RNA is favored in this structural conformation. Our work reveals the structural versatility of a fijivirus major viroplasm protein and provides clues to its mechanism of action. IMPORTANCE The mal de Río Cuarto virus (MRCV) causes an important maize disease in Argentina. MRCV replicates in several species of Gramineae plants and planthopper vectors. The viral factories, also called viroplasms, have been studied in detail in animal reovirids. This work reveals that a major viroplasm protein of MRCV forms previously unidentified structural arrangements and provides evidence that it may simultaneously adopt two distinct quaternary assemblies. Furthermore, our work uncovers an allosteric communication between the ATP and RNA binding sites that is favored in the multimeric arrangements. Our results contribute to the understanding of plant reovirids viroplasm structure and function and pave the way for the design of antiviral strategies for disease control.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    许多病毒将其复制所需的材料隔离到离散的亚细胞工厂中。对于轮状病毒(RV),这些工厂被称为病毒质,它们通过液-液相分离(LLPS)过程在宿主细胞胞质溶胶中形成。非结构蛋白2(NSP2)及其结合伴侣,非结构蛋白5(NSP5),对病毒质生物发生至关重要。然而,还没有完全理解NSP2和NSP5如何合作组建工厂。NSP2(残基291至317)的C端区域(CTR)是柔性的,允许它参与促进八聚体间相互作用的域交换相互作用,据推测,病毒质形成。分子动力学模拟表明,位置294(K294E)的赖氨酸到谷氨酸的变化降低了计算机上的NSP2CTR灵活性。为了测试感染期间NSP2CTR灵活性降低的影响,我们设计了一个带有这种变化的突变体RV(rRV-NSP2K294E)。单周期生长测定显示,与野生型对照(rRV-WT)相比,rRV-NSP2K294E的终点滴度降低>1.2-log。使用免疫荧光分析,我们发现rRV-NSP2K294E形成的更小,比rRV-WT更多的病毒质。活细胞成像实验证实了这些结果,并揭示rRV-NSP2K294E工厂具有延迟的融合动力学。此外,与对照NSP2WT相比,NSP2K294E和其他几种CTR突变体在NSP5共表达细胞中形成更少的病毒质样结构。最后,NSP2K294E在与NSP5一起孵育时在体外诱导LLPS液滴形成的能力方面表现出缺陷。这些结果强调了NSP2CTR灵活性在支持RV工厂生物发生方面的重要性。重要性病毒通常将其复制所需的材料浓缩到离散的细胞内工厂中。对于轮状病毒,儿童严重胃肠炎的药剂,工厂的形成部分是由称为NSP2的八聚体蛋白介导的。已经提出了NSP2的灵活C端区将几个NSP2八聚体连接在一起,一个可能对工厂形成很重要的特征。这里,我们在NSP2中创建了一个降低C末端灵活性的变化,并分析了对轮状病毒工厂的影响.我们发现,这种变化导致了更小,更多的工厂的形成,这些工厂不能像野生型病毒那样容易融合在一起。改变的NSP2蛋白在试管中形成工厂样冷凝物的能力也降低。一起,这些结果增加了我们对NSP2如何支持轮状病毒工厂形成的认识,这是病毒复制的关键步骤.
    Many viruses sequester the materials needed for their replication into discrete subcellular factories. For rotaviruses (RVs), these factories are called viroplasms, and they are formed in the host cell cytosol via the process of liquid-liquid phase separation (LLPS). The nonstructural protein 2 (NSP2) and its binding partner, nonstructural protein 5 (NSP5), are critical for viroplasm biogenesis. Yet it is not fully understood how NSP2 and NSP5 cooperate to form factories. The C-terminal region (CTR) of NSP2 (residues 291 to 317) is flexible, allowing it to participate in domain-swapping interactions that promote interoctamer interactions and, presumably, viroplasm formation. Molecular dynamics simulations showed that a lysine-to-glutamic acid change at position 294 (K294E) reduces NSP2 CTR flexibility in silico. To test the impact of reduced NSP2 CTR flexibility during infection, we engineered a mutant RV bearing this change (rRV-NSP2K294E). Single-cycle growth assays revealed a >1.2-log reduction in endpoint titers for rRV-NSP2K294E versus the wild-type control (rRV-WT). Using immunofluorescence assays, we found that rRV-NSP2K294E formed smaller, more numerous viroplasms than rRV-WT. Live-cell imaging experiments confirmed these results and revealed that rRV-NSP2K294E factories had delayed fusion kinetics. Moreover, NSP2K294E and several other CTR mutants formed fewer viroplasm-like structures in NSP5 coexpressing cells than did control NSP2WT. Finally, NSP2K294E exhibited defects in its capacity to induce LLPS droplet formation in vitro when incubated alongside NSP5. These results underscore the importance of NSP2 CTR flexibility in supporting the biogenesis of RV factories. IMPORTANCE Viruses often condense the materials needed for their replication into discrete intracellular factories. For rotaviruses, agents of severe gastroenteritis in children, factory formation is mediated in part by an octameric protein called NSP2. A flexible C-terminal region of NSP2 has been proposed to link several NSP2 octamers together, a feature that might be important for factory formation. Here, we created a change in NSP2 that reduced C-terminal flexibility and analyzed the impact on rotavirus factories. We found that the change caused the formation of smaller and more numerous factories that could not readily fuse together like those of the wild-type virus. The altered NSP2 protein also had a reduced capacity to form factory-like condensates in a test tube. Together, these results add to our growing understanding of how NSP2 supports rotavirus factory formation-a key step of viral replication.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    轮状病毒(RV)病毒质是细胞溶质内含物,其中病毒基因组复制和病毒后代组装的主要步骤都发生。病毒质形成需要稳定的微管细胞骨架和脂滴,其中涉及几种病毒蛋白。病毒刺突蛋白VP4以前没有被证明在病毒质形成中具有直接作用。然而,它与病毒细胞附着有关,内吞内化,和病毒体形态发生。此外,VP4与肌动蛋白细胞骨架成分相互作用,主要在涉及病毒进出的过程中,因此可能在病毒质形成中具有间接作用。在这项研究中,我们用反向遗传学方法构建了重组RV,rRV/VP4-BAP,在VP4凝集素结构域的K145-G150环中含有生物素受体肽(BAP),允许实时监控。重组病毒具有复制能力,但适应性降低。我们证明rRV/VP4-BAP感染,与rRV/wt感染相反,由于形成的病毒质对解聚肌动蛋白和抑制肌球蛋白的药物不敏感,因此不会导致肌动蛋白细胞骨架重组。此外,野生型(wt)VP4,但不是VP4-BAP,似乎与肌动蛋白丝有关。同样,与NSP5和NSP2共表达的VP4诱导病毒质样结构的数量显着增加。有趣的是,模拟环K145-G150的小肽通过增加rRV/VP4-BAP形成病毒质的能力来挽救rRV/VP4-BAP的表型,从而改善病毒后代的形成.总的来说,这些结果提供了VP4和肌动蛋白细胞骨架之间的直接联系以催化病毒质组装。重要性刺突蛋白VP4参与轮状病毒(RV)生命周期的不同步骤,包括病毒细胞附着,内化,内吞的调节,病毒体形态发生,和病毒出口。利用反向遗传学,我们首次构建了重组RV,rRV/VP4-BAP,在VP4的凝集素结构域(环K145-G150)中含有异源肽。rRV/VP4-BAP具有复制能力,但由于重组肌动蛋白细胞骨架的能力缺陷,适应性降低。这影响了病毒质组装的效率。通过添加模拟野生型VP4环K145-G150的可渗透小肽来挽救该缺陷。除了揭示VP4的新作用外,我们的发现还表明,带有工程化VP4的rRV可以用作新的双重疫苗接种平台,提供针对RV和其他异源抗原的免疫力。
    Rotavirus (RV) viroplasms are cytosolic inclusions where both virus genome replication and primary steps of virus progeny assembly take place. A stabilized microtubule cytoskeleton and lipid droplets are required for the viroplasm formation, which involves several virus proteins. The viral spike protein VP4 has not previously been shown to have a direct role in viroplasm formation. However, it is involved with virus-cell attachment, endocytic internalization, and virion morphogenesis. Moreover, VP4 interacts with actin cytoskeleton components, mainly in processes involving virus entrance and egress, and thereby may have an indirect role in viroplasm formation. In this study, we used reverse genetics to construct a recombinant RV, rRV/VP4-BAP, that contains a biotin acceptor peptide (BAP) in the K145-G150 loop of the VP4 lectin domain, permitting live monitoring. The recombinant virus was replication competent but showed a reduced fitness. We demonstrate that rRV/VP4-BAP infection, as opposed to rRV/wt infection, did not lead to a reorganized actin cytoskeleton as viroplasms formed were insensitive to drugs that depolymerize actin and inhibit myosin. Moreover, wild-type (wt) VP4, but not VP4-BAP, appeared to associate with actin filaments. Similarly, VP4 in coexpression with NSP5 and NSP2 induced a significant increase in the number of viroplasm-like structures. Interestingly, a small peptide mimicking loop K145-G150 rescued the phenotype of rRV/VP4-BAP by increasing its ability to form viroplasms and hence improve virus progeny formation. Collectively, these results provide a direct link between VP4 and the actin cytoskeleton to catalyze viroplasm assembly. IMPORTANCE The spike protein VP4 participates in diverse steps of the rotavirus (RV) life cycle, including virus-cell attachment, internalization, modulation of endocytosis, virion morphogenesis, and virus egress. Using reverse genetics, we constructed for the first time a recombinant RV, rRV/VP4-BAP, harboring a heterologous peptide in the lectin domain (loop K145-G150) of VP4. The rRV/VP4-BAP was replication competent but with reduced fitness due to a defect in the ability to reorganize the actin cytoskeleton, which affected the efficiency of viroplasm assembly. This defect was rescued by adding a permeable small-peptide mimicking the wild-type VP4 loop K145-G150. In addition to revealing a new role of VP4, our findings suggest that rRV harboring an engineered VP4 could be used as a new dual vaccination platform providing immunity against RV and additional heterologous antigens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号