viral mapping

  • 文章类型: Journal Article
    病毒在宿主基因组中的整合在癌变中起着关键作用。涉及各种破坏性机制,导致基因组不稳定,突变,和DNA损伤。通过下一代测序(NGS),我们现在可以精确地识别病毒和宿主基因组断点和嵌合序列,这对集成站点分析很有用。在这项研究中,我们评估了专门设计用于检测三种关键病毒的商业混合捕获NGS面板:HPV,HBV,HIV-1我们还测试了病毒混合捕获(VHC)和病毒集成站点(VIS)分析的工作流程,在CLC微生物基因组学中利用定制的病毒数据库。通过分析病毒感染的癌细胞系(包括SiHa,HeLa,CaSki,C-33A,DoTc2,2A3,SCC154用于HPV;3B2,SNU-182用于HBV;和ACH-2用于HIV-1),我们精确地确定了病毒整合位点。工作流程还强调了可能在肿瘤发展中起关键作用的破坏和邻近的人类基因。我们的结果包括信息丰富的病毒-宿主读取映射,基因组断点,和整合圆形地块。这些视觉表示增强了我们对集成过程的理解。总之,我们的无缝端到端工作流程弥合了理解病毒对癌症发展的贡献的差距,为改进诊断和治疗策略铺平道路。
    Viral integration within the host genome plays a pivotal role in carcinogenesis. Various disruptive mechanisms are involved, leading to genomic instability, mutations, and DNA damage. With next-generation sequencing (NGS), we can now precisely identify viral and host genomic breakpoints and chimeric sequences, which are useful for integration site analysis. In this study, we evaluated a commercial hybrid capture NGS panel specifically designed for detecting three key viruses: HPV, HBV, and HIV-1. We also tested workflows for Viral Hybrid Capture (VHC) and Viral Integration Site (VIS) analysis, leveraging customized viral databases in CLC Microbial Genomics. By analyzing sequenced data from virally infected cancer cell lines (including SiHa, HeLa, CaSki, C-33A, DoTc2, 2A3, SCC154 for HPV; 3B2, SNU-182 for HBV; and ACH-2 for HIV-1), we precisely pinpointed viral integration sites. The workflow also highlighted disrupted and neighboring human genes that may play a crucial role in tumor development. Our results included informative virus-host read mappings, genomic breakpoints, and integration circular plots. These visual representations enhance our understanding of the integration process. In conclusion, our seamless end-to-end workflow bridges the gap in understanding viral contributions to cancer development, paving the way for improved diagnostics and treatment strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人乳头瘤病毒(HPV)在宿主基因组中的整合可能通过各种破坏性机制促进癌变。通过下一代测序(NGS),病毒和宿主基因组断点和嵌合序列的鉴定现在是可能的。然而,一个简单的,简化的生物信息学工作流程直到最近才存在。这里,我们测试了两个新的,CLC微生物基因组学中的自动化工作流程,即,病毒混合捕获(VHC)数据分析和病毒集成站点(VIS)识别,以提高软件性能和效率。嵌入HPV和人类参考基因组的工作流程用于分析来自21名加蓬妇女的癌前和癌前HPV宫颈细胞学的公开可用的NGS数据集。VHC和VIS工作流程中值运行时间分别为每个样本19和7分钟,分别。VIS动态图形输出包括读取映射、病毒-宿主基因组断点,和病毒-宿主整合循环图。关键发现,包括被破坏的和附近的基因,在自动生成的报告中进行了汇总。总的来说,VHC和VIS工作流程被证明是定位病毒-宿主整合位点和识别破坏和邻近人类基因的快速和准确的方法.将HPVVIS作图应用于侵袭前或侵袭性肿瘤将增进我们对病毒肿瘤发生的理解,并促进发现预后生物标志物和治疗靶标。
    Human papillomavirus (HPV) integration within the host genome may contribute to carcinogenesis through various disruptive mechanisms. With next-generation sequencing (NGS), identification of viral and host genomic breakpoints and chimeric sequences are now possible. However, a simple, streamlined bioinformatics workflow has been non-existent until recently. Here, we tested two new, automated workflows in CLC Microbial Genomics, i.e., Viral Hybrid Capture (VHC) Data Analysis and Viral Integration Site (VIS) Identification for software performance and efficiency. The workflows embedded with HPV and human reference genomes were used to analyze a publicly available NGS dataset derived from pre- and cancerous HPV+ cervical cytology of 21 Gabonese women. The VHC and VIS workflow median runtimes were 19 and 7 min per sample, respectively. The VIS dynamic graphical outputs included read mappings, virus-host genomic breakpoints, and virus-host integration circular plots. Key findings, including disrupted and nearby genes, were summarized in an auto-generated report. Overall, the VHC and VIS workflows proved to be a rapid and accurate means of localizing viral-host integration site(s) and identifying disrupted and neighboring human genes. Applying HPV VIS-mapping to pre- or invasive tumors will advance our understanding of viral oncogenesis and facilitate the discovery of prognostic biomarkers and therapeutic targets.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号