viral capsid assembly

  • 文章类型: Journal Article
    我们提出了一种新的小分子抗病毒化学型,通过非常规的无细胞蛋白质合成和基于组装的表型筛选鉴定,用于调节病毒衣壳组装。PAV-431,该系列的代表性化合物的活性,已在多种细胞培养模型中针对引起人类大多数呼吸道疾病的所有六个病毒家族的感染性病毒进行了验证。在动物中,这种化学型已被证明对猪流行性腹泻病毒(一种冠状病毒)和呼吸道合胞病毒(一种副粘病毒)有效。PAV-431显示与蛋白质14-3-3(一种已知的变构调节剂)结合。然而,它似乎只针对14-3-3的一小部分,该部分存在于动态多蛋白复合物中,该复合物的成分包括与病毒生命周期和先天免疫有关的蛋白质。这种靶多蛋白复合物的组成似乎在病毒感染后被修饰,并通过PAV-431治疗在很大程度上恢复。先进的模拟,PAV-104被证明对病毒修饰的靶标具有选择性,从而避免宿主毒性。我们的发现提出了一种新的理解范式,和下药,主机-病毒接口,从而为呼吸道病毒性疾病的治疗提供了一种新的临床治疗策略。
    We present a novel small molecule antiviral chemotype that was identified by an unconventional cell-free protein synthesis and assembly-based phenotypic screen for modulation of viral capsid assembly. Activity of PAV-431, a representative compound from the series, has been validated against infectious viruses in multiple cell culture models for all six families of viruses causing most respiratory diseases in humans. In animals, this chemotype has been demonstrated efficacious for porcine epidemic diarrhoea virus (a coronavirus) and respiratory syncytial virus (a paramyxovirus). PAV-431 is shown to bind to the protein 14-3-3, a known allosteric modulator. However, it only appears to target the small subset of 14-3-3 which is present in a dynamic multi-protein complex whose components include proteins implicated in viral life cycles and in innate immunity. The composition of this target multi-protein complex appears to be modified upon viral infection and largely restored by PAV-431 treatment. An advanced analog, PAV-104, is shown to be selective for the virally modified target, thereby avoiding host toxicity. Our findings suggest a new paradigm for understanding, and drugging, the host-virus interface, which leads to a new clinical therapeutic strategy for treatment of respiratory viral disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    自噬作为一种防御细胞内病原体的机制,但是一些微生物为了自己的利益而利用它。因此,某些疱疹病毒包括自噬膜进入其感染性病毒颗粒。在这项研究中,我们分析了爱泼斯坦-巴尔病毒(EBV)的纯化病毒体的组成,一种常见的致癌γ-疱疹病毒。在这些中,我们发现了自噬机制的几个组成部分,包括膜相关的LC3B-II,和许多病毒蛋白,例如衣壳组装蛋白BVRF2和BdRF1。此外,我们表明,BVRF2和BdRF1通过它们的共同蛋白结构域与LC3B-II相互作用。使用EBV突变体,我们确定BVRF2对于组装成熟衣壳和产生感染性EBV至关重要。然而,只要自噬不受损,BdRF1就足以释放非感染性病毒包膜。这些数据表明,BVRF2和BdRF1不仅对于衣壳组装是重要的,而且与ATG5-ATG12-ATG15L1的LC3B缀合复合物一起对于EBV包膜释放也是关键的。
    Autophagy serves as a defense mechanism against intracellular pathogens, but several microorganisms exploit it for their own benefit. Accordingly, certain herpesviruses include autophagic membranes into their infectious virus particles. In this study, we analyzed the composition of purified virions of the Epstein-Barr virus (EBV), a common oncogenic γ-herpesvirus. In these, we found several components of the autophagy machinery, including membrane-associated LC3B-II, and numerous viral proteins, such as the capsid assembly proteins BVRF2 and BdRF1. Additionally, we showed that BVRF2 and BdRF1 interact with LC3B-II via their common protein domain. Using an EBV mutant, we identified BVRF2 as essential to assemble mature capsids and produce infectious EBV. However, BdRF1 was sufficient for the release of noninfectious viral envelopes as long as autophagy was not compromised. These data suggest that BVRF2 and BdRF1 are not only important for capsid assembly but together with the LC3B conjugation complex of ATG5-ATG12-ATG15L1 are also critical for EBV envelope release.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    研究生物分子相互作用是一项关键但具有挑战性的任务。由于其规模大,许多生物分子相互作用很难通过所有的原子模型来模拟。许多领域都非常需要研究生物分子相互作用的有效方法。在这里,我们介绍了结构操纵(StructureMan)程序,以在研究大规模生物分子相互作用时操作结构。这种新颖的StructureMan工具提供了可用于研究各种大型生物系统中的相互作用的综合操作。结合DelPhi、DelPhiForce等静电计算程序,StructureMan被实施以揭示两个大型生物学示例中的详细静电特征,病毒衣壳和分子马达-微管复合物。这两个实施例的应用揭示了病毒衣壳和分子马达中有趣的结合机制。这些应用表明,StructureMan可以广泛用于研究大规模生物学问题中的生物分子相互作用。这种新颖的工具提供了一种有效研究生物分子相互作用的替代方法,尤其是大规模的生物系统。StructureMan工具可在我们的网站上获得:http://compbio。utep.edu/static/downloads/script-for-munipulation2.zip.
    Studying biomolecular interactions is a crucial but challenging task. Due to their large scales, many biomolecular interactions are difficult to be simulated via all atom models. An effective approach to investigate the biomolecular interactions is highly demanded in many areas. Here we introduce a Structure Manipulation (StructureMan) program to operate the structures when studying the large-scale biomolecular interactions. This novel StructureMan tool provides comprehensive operations which can be utilized to study the interactions in various large biological systems. Combining with electrostatic calculation programs such as DelPhi and DelPhiForce, StructureMan was implemented to reveal the detailed electrostatic features in two large biological examples, the viral capsid and molecular motor-microtubule complexes. Applications on these two examples revealed interesting binding mechanisms in the viral capsid and molecular motor. Such applications demonstrated that the StructureMan can be widely used when studying the biomolecular interactions in large scale biological problems. This novel tool provides an alternative approach to efficiently study the biomolecular interactions, especially for large scale biology systems. The StructureMan tool is available at our website: http://compbio.utep.edu/static/downloads/script-for-munipulation2.zip.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号