uracil DNA glycosylase

  • 文章类型: Journal Article
    DNA糖基化酶是一组酶,通过识别和去除DNA分子中受损或不正确的碱基,在DNA修复过程中发挥关键作用。保持遗传信息的完整性。尿嘧啶DNA糖基化酶(UDG)的异常表达,碱基切除修复途径中重要的DNA糖基化酶之一,与许多疾病有关。这里,我们提出了一种简单的基于立足点区触发CRISPR/Cas12a反式切割的UDG活性检测方法。UDG产生的发夹DNA探针(HP)上的立足点区域可以诱导荧光团和猝灭剂对ssDNA的反式切割,产生明显的荧光信号。这种无原型间隔区相邻基序(PAM)的方法在检测UDG方面具有显着的灵敏度和特异性,检出限低至0.000368UmL-1。此外,该方法能够在复杂的生物样品中筛选抑制剂和测量UDG。这些优点使其在临床诊断和药物发现中的应用非常有希望。
    DNA glycosylases are a group of enzymes that play a crucial role in the DNA repair process by recognizing and removing damaged or incorrect bases from DNA molecules, which maintains the integrity of the genetic information. The abnormal expression of uracil-DNA glycosylase (UDG), one of significant DNA glycosylases in the base-excision repair pathway, is linked to numerous diseases. Here, we proposed a simple UDG activity detection method based on toehold region triggered CRISPR/Cas12a trans-cleavage. The toehold region on hairpin DNA probe (HP) produced by UDG could induce the trans-cleavage of ssDNA with fluorophore and quencher, generating an obvious fluorescence signal. This protospacer adjacent motif (PAM)-free approach achieves remarkable sensitivity and specificity in detecting UDG, with a detection limit as low as 0.000368 U mL-1. Moreover, this method is able to screen inhibitors and measure UDG in complex biological samples. These advantages render it highly promising for applications in clinical diagnosis and drug discovery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DNA损伤的产生导致突变并因此导致癌症。活性氧是在人类癌症中发现的DNA损伤和一些突变特征的重要来源。8-氧代-7,8-二氢鸟嘌呤(GO,8-羟基鸟嘌呤)是最丰富的氧化碱基之一,并在修饰位点诱导G→T颠换突变。受损的G碱基还导致人类细胞中5'-GpA-3'二核苷酸G碱基的非靶向碱基置换突变(远距离作用突变),和胞嘧啶脱氨酶载脂蛋白BmRNA编辑酶,催化多肽样3(APOBEC3)参与突变过程。脱氨基的胞嘧啶,即,尿嘧啶,预计尿嘧啶DNA糖基化酶会去除碱基。5'-GpA-3'的G碱基处的大多数取代突变可能是由糖基化酶形成的无碱基位点引起的。在这项研究中,我们在人U2OS细胞中表达了来自枯草芽孢杆菌噬菌体PBS2的尿嘧啶DNA糖基化酶抑制剂,并研究了其对GO诱导的作用距离突变的影响.尿嘧啶DNA糖基化酶的抑制增加了突变频率,特别是,G→A跃迁的频率。这些结果表明尿嘧啶DNA糖基化酶,除APOBEC3外,还参与GO诱导的非靶向突变过程。
    The generation of DNA damage causes mutations and consequently cancer. Reactive oxygen species are important sources of DNA damage and some mutation signatures found in human cancers. 8-Oxo-7,8-dihydroguanine (GO, 8-hydroxyguanine) is one of the most abundant oxidized bases and induces a G→T transversion mutation at the modified site. The damaged G base also causes untargeted base substitution mutations at the G bases of 5\'-GpA-3\' dinucleotides (action-at-a-distance mutations) in human cells, and the cytosine deaminase apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3 (APOBEC3) is involved in the mutation process. The deaminated cytosine, i.e., uracil, bases are expected to be removed by uracil DNA glycosylase. Most of the substitution mutations at the G bases of 5\'-GpA-3\' might be caused by abasic sites formed by the glycosylase. In this study, we expressed the uracil DNA glycosylase inhibitor from Bacillus subtilis bacteriophage PBS2 in human U2OS cells and examined the effects on the GO-induced action-at-a-distance mutations. The inhibition of uracil DNA glycosylase increased the mutation frequency, and in particular, the frequency of G→A transitions. These results indicated that uracil DNA glycosylase, in addition to APOBEC3, is involved in the untargeted mutation process induced by GO.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本研究旨在建立一种简便、灵敏的检测方法,一种用作核酸药物的21个核苷酸的硫代磷酸寡核苷酸,使用连接酶检测反应。设计连接探针与fomivirsen和聚合酶链反应(PCR)引物杂交,在引物结合位点之间有脱氧尿苷部分。通过TaqDNA连接酶将探针连接到环状产物上,并且通过使用尿嘧啶DNA糖基化酶去除尿嘧啶碱基将所得产物转化为线性形式。然后使用实时PCR定量线性产物。所开发的方法可以检测水和HeLa基因组DNA溶液中的0.025-6.4nMfomivirsen和小鼠血清中的0.6-160nMfomivirsen,并结合基于碱化和中和的提取方法。该方法不仅可用于检测fomivirsen,还可用于检测由硫代磷酸酯寡核苷酸组成的其他功能性寡核苷酸。总之,本研究为核酸药物fomivirsen的检测提供了一种实用有效的方法。
    This study aimed to develop a simple and sensitive detection method for fomivirsen, a 21-nucleotide phosphorothioate oligonucleotide used as a nucleic acid medicine, using a ligase detection reaction. A ligation probe was designed to hybridize with fomivirsen and polymerase chain reaction (PCR) primers, with a deoxyuridine part between the primer binding sites. The probe was ligated to a circular product by Taq DNA ligase, and the resulting product was converted to a linear form through the removal of the uracil base using uracil DNA glycosylase. The linear product was then quantified using real-time PCR. The developed method could detect 0.025-6.4 nM of fomivirsen in water and HeLa genomic DNA solutions and 0.6-160 nM of fomivirsen in mouse serum in combination with an extraction method based on alkalinization and neutralization. This method could be useful for not only detecting fomivirsen but also other functional oligonucleotides composed of phosphorothioate oligonucleotides. In summary, this study presents a practical and effective approach to the detection of the nucleic acid medicine fomivirsen.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    痘病毒的DNA复制是通过病毒聚合酶F8进行的,也需要其他病毒因子,包括持续合成因子A22,尿嘧啶DNA糖基化酶E4和磷蛋白H5。然而,这些病毒因子的分子作用尚不清楚.这里,我们在不同的引物-模板DNA底物存在下表征了F8-A22-E4和F8-A22-E4-H5复合物的结构。E4位于模板单链DNA(ssDNA)上的F8上游,具有催化活性,强调DNA碱基切除修复和DNA合成之间的功能耦合。此外,H5,四聚体形式,与真核聚合酶复合物中PCNA(增殖细胞核抗原)相似的位置结合F8下游的双链DNA(dsDNA)区域。省略H5或破坏其DNA相互作用显示全长DNA产物的合成减少。这些结构为聚合酶的工作周期提供快照,并对病毒DNA复制中这些基本因素的机制产生见解。
    The DNA replication of mpox virus is performed by the viral polymerase F8 and also requires other viral factors, including processivity factor A22, uracil DNA glycosylase E4, and phosphoprotein H5. However, the molecular roles of these viral factors remain unclear. Here, we characterize the structures of F8-A22-E4 and F8-A22-E4-H5 complexes in the presence of different primer-template DNA substrates. E4 is located upstream of F8 on the template single-stranded DNA (ssDNA) and is catalytically active, highlighting a functional coupling between DNA base-excision repair and DNA synthesis. Moreover, H5, in the form of tetramer, binds to the double-stranded DNA (dsDNA) region downstream of F8 in a similar position as PCNA (proliferating cell nuclear antigen) does in eukaryotic polymerase complexes. Omission of H5 or disruption of its DNA interaction showed a reduced synthesis of full-length DNA products. These structures provide snapshots for the working cycle of the polymerase and generate insights into the mechanisms of these essential factors in viral DNA replication.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    尿嘧啶DNA糖基化酶(UDG或Ung)是参与从DNA中切除尿嘧啶作为修复机制的关键酶。因此,设计Ung抑制剂是治疗不同癌症和传染病的有希望的策略。尿嘧啶环及其衍生物已被证明可以抑制结核分枝杆菌Ung(MtUng),由与尿嘧啶结合袋(UBP)的特异性和强结合产生。为了设计新型的Mtung抑制剂,我们筛选了几种非尿嘧啶环片段,这些片段由于与尿嘧啶结构基序的高度相似性而被假设占据了MtUngUBP。这些努力导致了新的MtUng环抑制剂的发现。在这里,我们报告了这些碎片的共晶姿势,确认它们在UBP中的约束力,从而为新型先导化合物的设计提供了强大的结构框架。我们选择巴比妥酸(BA)环作为进一步衍生化和SAR分析的案例研究。建模研究预测了设计类似物的BA环与MtUngUBP相互作用,就像尿嘧啶环一样。使用放射性和基于荧光的测定在体外筛选合成的化合物。这些研究导致了一种新型的基于BA的MtUng抑制剂18a(IC50=300μM),其效力超过尿嘧啶环24倍。
    Uracil DNA glycosylase (UDG or Ung) is a key enzyme involved in uracil excision from the DNA as a repair mechanism. Designing Ung inhibitors is thus a promising strategy to treat different cancers and infectious diseases. The uracil ring and its derivatives have been shown to inhibit Mycobacterium tuberculosis Ung (MtUng), resulting from specific and strong binding with the uracil-binding pocket (UBP). To design novel MtUng inhibitors, we screened several non-uracil ring fragments hypothesised to occupy MtUng UBP due to their high similarity to the uracil structural motif. These efforts have resulted in the discovery of novel MtUng ring inhibitors. Here we report the co-crystallised poses of these fragments, confirming their binding within the UBP, thus providing a robust structural framework for the design of novel lead compounds. We selected the barbituric acid (BA) ring as a case study for further derivatisation and SAR analysis. The modelling studies predicted the BA ring of the designed analogues to interact with the MtUng UBP much like the uracil ring. The synthesised compounds were screened in vitro using radioactivity and a fluorescence-based assay. These studies led to a novel BA-based MtUng inhibitor 18a (IC50 = 300 μM) displaying ∼24-fold potency over the uracil ring.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    四面体DNA纳米结构(TDN),作为一种经典的生物材料,它不仅具有优异的结构稳定性和刚度,但由于严格的碱基对互补,也具有高可编程性,广泛应用于各种生物传感和生物分析领域。在这项研究中,我们首先构建了一种基于尿嘧啶DNA糖基化酶(UDG)触发的TDN崩溃和末端脱氧核苷酸转移酶(TDT)诱导的铜纳米颗粒(CuNPs)插入的新型生物传感器,用于荧光和直观分析UDG活性。在目标酶UDG的存在下,在TDN上修饰的尿嘧啶碱基被特异性鉴定并去除以产生脱碱基位点(AP位点)。核酸内切酶IV(Endo。IV)可以切割AP位点,使TDN坍塌并产生3'-羟基(3'-OH),然后在TDT的辅助下伸长以产生poly(T)序列。最后,使用poly(T)序列作为模板(T-CuNP),添加硫酸铜(II)(Cu2)和1-抗坏血酸(AA)以形成CuNP,产生强烈的荧光信号。该方法选择性好,灵敏度高,检出限为8.6×10-5U/mL。此外,该策略已成功应用于UDG抑制剂的筛选和复杂细胞裂解物中UDG活性的检测,这意味着它在临床诊断和生物医学研究中具有广阔的应用前景。
    Tetrahedral DNA nanostructure (TDN), as a classical bionanomaterial, which not only has excellent structural stability and rigidity, but also possesses high programmability due to strict base-pairs complementation, is widely used in various biosensing and bioanalysis fields. In this study, we first constructed a novel biosensor based on Uracil DNA glycosylase (UDG) -triggered collapse of TDN and terminal deoxynucleotidyl transferase (TDT)-induced insertion of copper nanoparticles (CuNPs) for fluorescence and visual analysis of UDG activity. In the presence of the target enzyme UDG, the uracil base modified on the TDN were specifically identified and removed to produce an abasic site (AP site). Endonuclease IV (Endo.IV) could cleave the AP site, making the TDN collapse and generating 3\'-hydroxy (3\'-OH), which were then elongated under the assistance of TDT to produce poly (T) sequences. Finally, Copper (II) sulfate (Cu2+) and l-Ascorbic acid (AA) were added to form CuNPs using poly (T) sequences as templates (T-CuNPs), resulting in a strong fluorescence signal. This method exhibited good selectivity and high sensitivity with a detection limit of 8.6 × 10-5 U/mL. Moreover, the strategy has been successfully applied to the screening of UDG inhibitors and the detection of UDG activity in complex cell lysates, which means that it has promising applications in clinical diagnosis and biomedical research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    尿嘧啶DNA糖基化酶(UNG)从DNA中去除诱变尿嘧啶碱基以启动碱基切除修复(BER)。结果是通过高保真BER途径进一步加工以完成修复和维持基因组完整性的无碱基位点(AP位点)。γ疱疹病毒(GHVs),人卡波西肉瘤疱疹病毒(KSHV),EB病毒(EBV)和鼠γ疱疹病毒68(MHV68)编码在病毒基因组复制中起作用的功能性UNG。哺乳动物和GHVUNG具有整体结构和序列相似性,除了DNA结合域中的不同氨基末端结构域和亮氨酸环基序在序列和长度上有所不同。为了确定不同的结构域是否有助于GHV和哺乳动物UNG之间的功能差异,我们分析了它们在DNA相互作用和催化中的作用。通过利用具有交换结构域的嵌合UNG,我们发现GHV中的亮氨酸环,但不是哺乳动物UNG促进与AP位点的相互作用,并且氨基末端结构域调节这种相互作用。我们还发现,亮氨酸环结构有助于单链DNA与双链DNA中尿嘧啶的UDGase活性差异。总之,我们证明了GHVUNG从其哺乳动物对应物进化出不同的结构域,这有助于其哺乳动物对应物的不同生化特性。
    Uracil DNA glycosylase (UNG) removes mutagenic uracil base from DNA to initiate base excision repair (BER). The result is an abasic site (AP site) that is further processed by the high-fidelity BER pathway to complete repair and maintain genome integrity. The gammaherpesviruses (GHVs), human Kaposi sarcoma herpesvirus (KSHV), Epstein-Barr virus (EBV), and murine gammaherpesvirus 68 (MHV68) encode functional UNGs that have a role in viral genome replication. Mammalian and GHVs UNG share overall structure and sequence similarity except for a divergent amino-terminal domain and a leucine loop motif in the DNA binding domain that varies in sequence and length. To determine if divergent domains contribute to functional differences between GHV and mammalian UNGs, we analyzed their roles in DNA interaction and catalysis. By utilizing chimeric UNGs with swapped domains we found that the leucine loop in GHV, but not mammalian UNGs facilitates interaction with AP sites and that the amino-terminal domain modulates this interaction. We also found that the leucine loop structure contributes to differential UDGase activity on uracil in single- versus double-stranded DNA. Taken together we demonstrate that the GHV UNGs evolved divergent domains from their mammalian counterparts that contribute to differential biochemical properties from their mammalian counterparts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尿嘧啶是一种常见的DNA损伤,被尿嘧啶DNA-糖基化酶(UDG)识别并去除,作为碱基切除修复途径的一部分。切除通过基础翻转进行,和UDG效率被认为取决于邻近病变的基部的可变形性的难易程度。我们使用分子动力学模拟来评估大型dsDNA链文库的灵活性,包含所有带有U:A的四核苷酸基序,U:G,T:A或C:G碱基对。我们的研究表明,尿嘧啶受损的DNA在很大程度上遵循未受损DNA的灵活性趋势。测得的弯曲持续长度,凹槽宽度,步骤参数和碱基翻转倾向表明尿嘧啶增加了DNA的灵活性,并且U:G碱基配对链比U:A链更柔韧。某些序列上下文比其他序列上下文更易变形,在尿嘧啶旁边的3\'基地发挥关键作用。当这个基础是A或G时,灵活性很大,并抑制C或T。与尿嘧啶相邻的5\'T强烈促进灵活性,但其他5个基地的影响力较小。DNA弯曲与阶跃变形和碱基翻转相关,和弯曲辅助翻转。我们的研究表明,底物灵活性和UDG效率之间的联系是广泛有效的,有助于解释为什么UDG更喜欢绑定U:G碱基配对链,并表明UDG-底物复合物的DNA弯曲角度对于碱基翻转是最佳的。由RamaswamyH.Sarma沟通。
    Uracil is a common DNA lesion which is recognized and removed by uracil DNA-glycosylase (UDG) as a part of the base excision repair pathway. Excision proceeds by base flipping, and UDG efficiency is thought to depend on the ease of deformability of the bases neighboring the lesion. We used molecular dynamics simulations to assess the flexibility of a large library of dsDNA strands, containing all tetranucleotide motifs with U:A, U:G, T:A or C:G base pairs. Our study demonstrates that uracil damaged DNA largely follows trends in flexibility of undamaged DNA. Measured bending persistence lengths, groove widths, step parameters and base flipping propensities demonstrate that uracil increases the flexibility of DNA, and that U:G base paired strands are more flexible than U:A strands. Certain sequence contexts are more deformable than others, with a key role for the 3\' base next to uracil. Flexibilities are large when this base is an A or G, and repressed for a C or T. A 5\' T adjacent to the uracil strongly promotes flexibility, but other 5\' bases are less influential. DNA bending is correlated to step deformations and base flipping, and bending aids flipping. Our study implies that the link between substrate flexibility and UDG efficiency is widely valid, helps explain why UDG prefers to bind U:G base paired strands, and suggests that the DNA bending angle of the UDG-substrate complex is optimal for base flipping.Communicated by Ramaswamy H. Sarma.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    作为与各种疾病相关的重要生物标志物,尿嘧啶-DNA糖基化酶(UDG)检测对于疾病诊断至关重要,治疗选择,和预后评估。近年来,CRISPR-Cas12a反式切割的单链DNA探针的信号放大效应为构建高灵敏度的生物传感器提供了可用的策略。然而,其优越的反式切割活性已成为构建生物传感器的“双刃剑”,该传感器可以放大目标信号,同时还可以放大泄漏信号,导致失控。因此,结构简单的结构,极低的背景,基于CRISPR-Cas12a的高灵敏度生物传感器是该领域亟待解决的瓶颈问题。这里,我们应用CRISPR-Cas12a与DNA杂交反应来开发一种简单的,快速,低背景,和高灵敏度的UDG活性检测方法。它没有PAM限制,检出限低至2.5×10-6U/mL。据我们所知,该方法是最灵敏的UDG检测方法之一。我们还使用该系统来分析肿瘤细胞中的UDG活性(LOD:1细胞/uL)并评估筛选UDG抑制剂的能力。此外,我们通过将生物传感器转染到细胞中验证了细胞内UDG活性成像的可能性。我们相信这种新型传感器具有良好的临床应用前景,将有效拓宽CRISPR-Cas12a的应用空间。
    As an essential biomarker associated with various diseases, Uracil-DNA Glycosylase (UDG) detection is vital for disease diagnosis, treatment selection, and prognosis assessment. In recent years, the signal amplification effect of the CRISPR-Cas12a trans-cleaved single-stranded DNA probe has provided an available strategy for constructing highly sensitive biosensors. However, its superior trans-cleavage activity has become a \"double-edged sword\" for building biosensors that can amplify the target signal while also amplifying the leakage signal, causing out of control. Therefore, the construction of structurally simple, extremely low-background, highly sensitive CRISPR-Cas12a-based biosensors is an urgent bottleneck problem in the field. Here, we applied CRISPR-Cas12a with a DNA hybridization reaction to develop a simple, rapid, low background, and highly sensitive method for UDG activity detection. It has no PAM restriction and the detection limit is as low as 2.5 × 10-6 U/mL. As far as we know, this method is one of the most sensitive methods for UDG detection. We also used this system to analyze UDG activity in tumor cells (LOD: 1 cell/uL) and to evaluate the ability to screen for UDG inhibitors. Furthermore, we verified the possibility of intracellular UDG activity imaging by transfecting the biosensors to the cells. We believe this novel sensor has good clinical application prospects and will effectively broaden the application space of CRISPR-Cas12a.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    人尿嘧啶DNA糖基化酶(UNG2)是一种酶,其主要功能是从基因组DNA中去除尿嘧啶碱基。UNG2活性是至关重要的,当尿嘧啶碱基在DNA中在类别转换重组和体细胞超突变过程中升高时,此外,UNG2影响增加基因组尿嘧啶水平的胸苷酸合酶抑制剂的功效。这里,我们总结了UNG2及其线粒体类似物UNG1的酶学性质。为了促进对这些高度保守蛋白活性的研究,我们讨论了三种基于荧光的酶检测方法,这些方法为我们对UNG2功能的理解提供了很多信息。该测定法使用合成的DNA寡核苷酸底物,其中尿嘧啶碱基掺入DNA中,并且基板可以是单链的,双链,或形成其他结构,如DNA发夹或连接。以不同的方式检测UNG2报告尿嘧啶碱基切除的荧光信号:(1)通过变性PAGE可视化UNG2反应产物来测量尿嘧啶从末端标记的寡核苷酸中的切除;(2)通过将尿嘧啶与2-氨基嘌呤碱基配对在溶液中检测从dsDNA底物中的尿嘧啶切除,尿嘧啶切除后,其固有荧光增强;或(3)UNG2从发夹分子信标底物上切除尿嘧啶会改变底物的结构,并通过减轻荧光猝灭而打开荧光。除了它们在表征UNG2属性方面的效用之外,这些检测方法正被用于发现该酶的抑制剂,并确定蛋白质-蛋白质相互作用如何影响UNG2功能.
    Human uracil DNA glycosylase (UNG2) is an enzyme whose primary function is to remove uracil bases from genomic DNA. UNG2 activity is critical when uracil bases are elevated in DNA during class switch recombination and somatic hypermutation, and additionally, UNG2 affects the efficacy of thymidylate synthase inhibitors that increase genomic uracil levels. Here, we summarize the enzymatic properties of UNG2 and its mitochondrial analog UNG1. To facilitate studies on the activity of these highly conserved proteins, we discuss three fluorescence-based enzyme assays that have informed much of our understanding on UNG2 function. The assays use synthetic DNA oligonucleotide substrates with uracil bases incorporated in the DNA, and the substrates can be single-stranded, double-stranded, or form other structures such as DNA hairpins or junctions. The fluorescence signal reporting uracil base excision by UNG2 is detected in different ways: (1) Excision of uracil from end-labeled oligonucleotides is measured by visualizing UNG2 reaction products with denaturing PAGE; (2) Uracil excision from dsDNA substrates is detected in solution by base pairing uracil with 2-aminopurine, whose intrinsic fluorescence is enhanced upon uracil excision; or (3) UNG2 excision of uracil from a hairpin molecular beacon substrate changes the structure of the substrate and turns on fluorescence by relieving a fluorescence quench. In addition to their utility in characterizing UNG2 properties, these assays are being adapted to discover inhibitors of the enzyme and to determine how protein-protein interactions affect UNG2 function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号