tunable syngas

  • 文章类型: Journal Article
    Direct photoconversion of low-concentration CO2 into a widely tunable syngas (i.e., CO/H2 mixture) provides a feasible outlet for the high value-added utilization of anthropogenic CO2 . However, in the low-concentration CO2 photoreduction system, it remains a huge challenge to screen appropriate catalysts for efficient CO and H2 production, respectively, and provide a facile parameter to tune the CO/H2 ratio in a wide range. Herein, by engineering the metal sites on the covalent organic frameworks matrix, low-concentration CO2 can be efficiently photoconverted into tunable syngas, whose CO/H2 ratio (1:19-9:1) is obviously wider than reported systems. Experiments and density functional theory calculations indicate that Fe sites serve as the H2 evolution sites due to the much stronger binding affinity to H2 O, while Ni sites act as the CO production sites for the higher affinity to CO2 . Notably, the widely tunable syngas can also be produced over other Fe/Ni-based bimetal catalysts, regardless of their structures and supporting materials, confirming the significant role of the metal sites in regulating the selectivity of CO2 photoreduction and providing a modular design strategy for syngas production.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Developing a convenient and effective method to prepare single-atom catalysts at mild synthetic conditions remains a challenging task. Herein, a voltage-gauged electrofiltration method was demonstrated to synthesize single-atom site catalysts at room temperature. Under regulation of the graphene oxide membrane, a bulk Fe plate was directly converted into Fe single atoms, and the diffusion rate of Fe ions was greatly reduced, resulting in an ultralow concentration of Fe2+ around the working electrode, which successfully prevented the growing of nuclei and aggregating of metal atoms. Monatomic Fe atoms are homogeneously anchored on the as-prepared nitrogen-doped carbon. Owing to the fast photoelectron injection from photosensitizers to atomically dispersed Fe sites through the highly conductive supported N-C, the Fe-SAs/N-C exhibits an outstanding photocatalytic activity toward CO2 aqueous reduction into syngas with a tunable CO/H2 ratio under visible light irradiation. The gas evolution rates for CO and H2 are 4500 and 4950 μmol g-1 h-1, respectively, and the tunable CO/H2 ratio is from 0.3 to 8.8. This article presents an efficient strategy to develop the single-atom site catalysts and bridges the gap between heterogeneous and homogeneous catalysts toward photocatalytic CO2 aqueous reduction into syngas.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号