translational toxicology

  • 文章类型: Journal Article
    环孢菌素A(CsA)尽管在各种器官中具有毒性,但仍显示出对免疫相关疾病的功效。包括肝脏,强调需要阐明其潜在的肝毒性机制。这项研究旨在捕获全基因组表达随时间的变化以及随后跨物种的相应途径的扰动。来自人类的六个数据,老鼠,和老鼠,包括动物肝脏组织,人类肝脏微组织,和两种暴露于CsA毒性剂量的肝细胞系,被使用。分析暴露于CsA10d的微组织,以获得动态差异表达基因(DEGs)。使用不同物种的1、3、5、7和28d的单时间点数据来提供其他证据。采用基于肝脏微组织的纵向设计,捕获了随时间持续上调或下调的DEG,并阐明了CsA毒性的众所周知的机制。在28d大鼠内部数据中,纵向数据一致变化的30个DEG也发生了变化,表达一致。一些基因(例如TUBB2A,PLIN2,APOB)在1-d和7-d小鼠数据中与鉴定的DEG表现出良好的一致性。路径分析揭示了蛋白质加工的上调,天冬酰胺N-连接糖基化,和内质网中的货物浓度。此外,阐明了与生物氧化,代谢产物和脂质代谢相关的途径的下调。这些途径也在单时间点数据中得到了丰富,并在物种之间得到了保守,暗示它们的生物学意义和普遍性。总的来说,基于人类类器官的纵向设计与跨物种验证相结合,提供了时间分子变化跟踪,帮助机械阐明和生物学相关的生物标志物发现。
    Cyclosporine A (CsA) has shown efficacy against immunity-related diseases despite its toxicity in various organs, including the liver, emphasizing the need to elucidate its underlying hepatotoxicity mechanism. This study aimed to capture the alterations in genome-wide expression over time and the subsequent perturbations of corresponding pathways across species. Six data from humans, mice, and rats, including animal liver tissue, human liver microtissues, and two liver cell lines exposed to CsA toxic dose, were used. The microtissue exposed to CsA for 10 d was analyzed to obtain dynamically differentially expressed genes (DEGs). Single-time points data at 1, 3, 5, 7, and 28 d of different species were used to provide additional evidence. Using liver microtissue-based longitudinal design, DEGs that were consistently up- or down-regulated over time were captured, and the well-known mechanism involved in CsA toxicity was elucidated. Thirty DEGs that consistently changed in longitudinal data were also altered in 28-d rat in-house data with concordant expression. Some genes (e.g. TUBB2A, PLIN2, APOB) showed good concordance with identified DEGs in 1-d and 7-d mouse data. Pathway analysis revealed up-regulations of protein processing, asparagine N-linked glycosylation, and cargo concentration in the endoplasmic reticulum. Furthermore, the down-regulations of pathways related to biological oxidations and metabolite and lipid metabolism were elucidated. These pathways were also enriched in single-time-point data and conserved across species, implying their biological significance and generalizability. Overall, the human organoids-based longitudinal design coupled with cross-species validation provides temporal molecular change tracking, aiding mechanistic elucidation and biologically relevant biomarker discovery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    尽管毒理学使用动物模型来代表现实世界的人类健康情景,基于实验室的研究和流行病学之间的关键转化差距仍然存在。在这项研究中,我们的目的是了解发育暴露于两种常见毒物后对DNA甲基化的毒性表观遗传效应,邻苯二甲酸二(2-乙基己基)邻苯二甲酸酯(DEHP)和金属铅(Pb),使用翻译范式,从小鼠研究中选择候选基因,并在四个人类出生队列中对其进行评估。来自发育暴露于DEHP的小鼠后代的数据,Pb,或对照用于在出生后第21天鉴定具有差异DNA甲基化的性别特异性位点的基因。通过荟萃分析检查了同源小鼠基因中人类婴儿DNA甲基化与产前DEHP或Pb的关联。在6个胞嘧啶(调整-p<0.05)和90个区域(调整-p<0.001)上观察到差异甲基化。这种翻译方法提供了一种独特的方法,可以检测在发育上易受环境毒物影响的保守表观遗传差异。
    Although toxicology uses animal models to represent real-world human health scenarios, a critical translational gap between laboratory-based studies and epidemiology remains. In this study, we aimed to understand the toxicoepigenetic effects on DNA methylation after developmental exposure to two common toxicants, the phthalate di(2-ethylhexyl) phthalate (DEHP) and the metal lead (Pb), using a translational paradigm that selected candidate genes from a mouse study and assessed them in four human birth cohorts. Data from mouse offspring developmentally exposed to DEHP, Pb, or control were used to identify genes with sex-specific sites with differential DNA methylation at postnatal day 21. Associations of human infant DNA methylation in homologous mouse genes with prenatal DEHP or Pb were examined with a meta-analysis. Differential methylation was observed on 6 cytosines (adjusted-p < 0.05) and 90 regions (adjusted-p < 0.001). This translational approach offers a unique method that can detect conserved epigenetic differences that are developmentally susceptible to environmental toxicants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本文比较了环状半挥发性甲基硅氧烷(cVMSs)D4,D5和D6的特定相吸入毒性。本文的目的是重新分析对这些cVMS的大鼠进行急性到慢性吸入研究的信息,以确定进入入口的特定相毒性的统一原则,如果它们依赖于急性,急性对慢性或慢性机制。这种重新分析支持以下假设:在任何给定温度下,浓度必须足够高以超过蒸气饱和度,以稳定气溶胶相并引起呼吸道部位对cVMS特异性物理化学性质两亲性和表面张力敏感的特定相效应。总之,入口效应和相关发现在本质上似乎是急性的,并且对液体气溶胶具有特异性。D4和D5的重复吸入暴露研究持续时间长达两年,未显示进入结果的门静脉慢性加重。在存在两亲性表面活性剂分子的肺部位置的发现似乎是由对沉积剂量的急性适应引起的。这种结果应更好地描述为物理化学性质“液体”和“疏水”赋予的高剂量液体气溶胶现象。这需要对cVMS进行阶段特定的人类风险表征。
    This paper compares the phase-specific inhalation toxicity of the cyclic semi-volatile methylsiloxanes (cVMSs) D4, D5 and D6. The objectives of this paper are to re-analyze information from acute to chronic inhalation studies on rats with these cVMSs to identify the unifying principles of phase-specific toxicity at the portal-of-entry and if they depend on acute, acute-on-chronic or chronic mechanisms. This re-analysis supports the hypothesis that concentrations must be high enough to exceed the vapor saturation at any given temperature for stabilizing the aerosol phase and evoking phase-specific effects at sites of the respiratory tract susceptible to the cVMSs-specific physicochemical properties amphiphilicity and surface tension. In summary, the portal-of-entry effects and related findings appear to be acute in nature and specific to liquid aerosol. The repeated inhalation exposure studies with D4 and D5 up to two years in duration did not reveal chronic aggravations of portal of entry outcomes. Findings at a pulmonary location where amphiphilic surfactant molecules are present appear to be caused by the acute adaptation to deposited dose. Such outcome should better be described as a high-dose liquid aerosol phenomenon imparted by the physicochemical properties \"liquid\" and \"hydrophobic\". This calls for a phase-specific human risk characterization of cVMSs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Metabolomics offers the opportunity to uncover endogenous biomarkers that can lead to metabolic pathways and networks and that underpin drug toxicity mechanisms. A novel protocol is presented and discussed that is applicable to drugs which generate urinary metabolites when administered to mice sensitive to its toxicity. The protocol would not apply to drugs that are not metabolized or eliminated by a different route. Separate stable isotope-labeled and unlabeled drug administration to mice is made together with collection of urines from control animals. Untargeted mass spectrometry-based metabolomic analysis of these three urine groups is conducted in addition to principal components analysis (PCA). In the case of unlabeled acetaminophen and [acetyl-2H3]acetaminophen, each given at a hepatotoxic dose (400 mg/kg i.p.) to the sensitive mouse strain (wild-type 129), the PCA loadings plot showed a distribution of ions in the shape of a \"fallen-Y\" with the deuterated metabolites in one arm and the paired nondeuterated metabolites in the other arm of the fallen-Y. Ions corresponding to the endogenous toxicity biomarkers sat in the mouth of the fallen-Y. This protocol represents an innovative means to separate endogenous biomarkers from drug metabolites, thereby aiding the identification of biomarkers of drug toxicity. For acetaminophen, increased hepatic oxidative stress, mitochondrial damage, Ca2+ signaling, heme catabolism, and saturation of glucuronidation, together with decreased fatty acid β-oxidation and cellular energy dysregulation were all implied from the discovered biomarkers. The protocol can be applied to other drugs and may now be translated to clinical studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号