translation regulator

  • 文章类型: Journal Article
    N6-methyladenosine (m6A) modification is the most prevalent internal modification in eukaryotic mRNA. YTH domain containing 2 (YTHDC2), a m6A binding protein, has recently been identified as a key player in human cancer. However, its contribution to gastric cancer (GC) remains unknown. Herein, we found that YTHDC2 was significantly upregulated in human GC tissues and associated with poor prognosis. CRISPR-Cas9 mediated YTHDC2 knockout notably inhibited GC cell viability, proliferation and invasion. Transcriptome analysis coupled with mechanism experiments revealed that yes-associated protein (YAP), the well-known oncogene, is the target of YTHDC2 in GC cells. Specifically, YTHDC2 recognized m6A-modified YAP mRNA at 5`-UTR, resulting in enhancing the translation efficiency of YAP, without affecting its mRNA level. In turn, YAP/TEAD directly targeted -843∼-831 region on the promoter of YTHDC2 and activated the transcription of YTHDC2, thus forming a positive regulatory loop. Further, using the xenograft tumor model, we found that knockout of YTHDC2 markedly reduced tumor size and lung metastasis nodules in vivo. And high YTHDC2 was strongly positively correlated with high YAP in clinical GC tissues. Collectively, our data demonstrate that YTHDC2 is a novel oncogene in GC, which provides the theoretical basis for the strategy of targeting YTHDC2 for GC patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The Ter mutation in Dead-End 1 (Dnd1), Dnd1Ter, which leads to a premature stop codon, has been determined to be the cause for primordial germ cell deficiency, accompanied with a high incidence of congenital testicular germ cell tumors (TGCTs) or teratomas in the 129/Sv-Ter mice. As an RNA-binding protein, DND1 can bind the 3\'-untranslated region (3\'-UTR) of mRNAs and function in translational regulation. DND1 can block microRNA (miRNA) access to the 3\'-UTR of target mRNAs, thus inhibiting miRNA-mediated mRNA degradation and up-regulating translation or can also function to degrade or repress mRNAs. Other mechanisms of DND1 activity include promoting translation initiation and modifying target protein activity. Although Dnd1Ter mutation causes spontaneous TGCT only in male 129 mice, it can also cause ovarian teratomas in mice when combined with other genetic defects or cause germ cell teratomas in both genders in the WKY/Ztm rat strain. Furthermore, studies on human cell lines, patient cancer tissues, and the use of human cancer genome analysis indicate that DND1 may possess either tumor-suppressive or -promoting functions in a variety of somatic cancers. Here we review the involvement of DND1 in cancers, including what appears to be its emerging role in somatic cancers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    RNA-binding proteins (RBPs) are multi-faceted proteins in the regulation of RNA or its RNA splicing, localisation, stability, and translation. Amassing proof from many recent and dedicated studies reinforces the perception of RBPs exerting control through differing expression levels, cellular localization and post-transcriptional alterations. However, since the regulation of RBPs is reliant on the micro-environment and events like stress response and metabolism, their binding affinities and the resulting RNA-RBP networks may be affected. Therefore, any misregulation and disruption in the features of RNA and its related homeostasis can lead to a number of diseases that include diabetes, cardiovascular disease, and other disorders such as cancer and neurodegenerative diseases. As such, correct regulation of RNA and RBPs is crucial to good health as the effect RBPs exert through loss of function can cause pathogenesis. In this review, we will discuss the significance of RBPs and their typical function and how this can be disrupted in disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    亨廷顿病(HD)是一种由亨廷顿(Htt)基因中的polyQ重复扩增引起的严重神经退行性疾病。虽然已知Htt淀粉样蛋白聚集体会影响许多细胞过程,他们在翻译中的作用尚未得到解决。在这里,我们报道了致病性Htt表达导致细胞中蛋白质合成缺陷。我们发现了一种功能性的朊病毒样蛋白,翻译调节剂Orb2,将被细胞中的Htt聚集体隔离。Orb2的共表达可以部分挽救与聚Q扩展Htt相关的致死性。这些发现可能与HD相关,因为Orb2的人类同源物也被致病性Htt聚集体隔离。我们的工作表明,翻译功能障碍是导致HD发病的原因之一,针对蛋白质合成途径的新疗法可能有助于缓解疾病症状。
    Huntington\'s disease (HD) is a severe neurodegenerative disorder caused by poly Q repeat expansion in the Huntingtin (Htt) gene. While the Htt amyloid aggregates are known to affect many cellular processes, their role in translation has not been addressed. Here we report that pathogenic Htt expression causes a protein synthesis deficit in cells. We find a functional prion-like protein, the translation regulator Orb2, to be sequestered by Htt aggregates in cells. Co-expression of Orb2 can partially rescue the lethality associated with poly Q expanded Htt. These findings can be relevant for HD as human homologs of Orb2 are also sequestered by pathogenic Htt aggregates. Our work suggests that translation dysfunction is one of the contributors to the pathogenesis of HD and new therapies targeting protein synthesis pathways might help to alleviate disease symptoms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Somatic mutations in the genes encoding components of the spliceosome occur frequently in human neoplasms, including myeloid dysplasias and leukemias, and less often in solid tumors. One of the affected factors, U2AF1, is involved in splice site selection, and the most common change, S34F, alters a conserved nucleic acid-binding domain, recognition of the 3\' splice site, and alternative splicing of many mRNAs. However, the role that this mutation plays in oncogenesis is still unknown. Here, we uncovered a noncanonical function of U2AF1, showing that it directly binds mature mRNA in the cytoplasm and negatively regulates mRNA translation. This splicing-independent role of U2AF1 is altered by the S34F mutation, and polysome profiling indicates that the mutation affects translation of hundreds of mRNA. One functional consequence is increased synthesis of the secreted chemokine interleukin 8, which contributes to metastasis, inflammation, and cancer progression in mice and humans.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号