translation elongation

  • 文章类型: Journal Article
    翻译是生活的基本过程。在真核生物中,翻译的延伸步骤是高度保守的,并且由真核翻译延伸因子(eEF)1A和eEF2驱动。延伸的一个显着变化是酿酒酵母中真核延伸因子(eEF)3的活性,由酵母延伸因子(YEF3)与所有真菌物种中的直向同源物编码,一些藻类,还有一些原生生物.在酿酒酵母中,YEF3是必需基因,eEF3在翻译延伸中起关键作用,因为它促进三元复合物酰化转移RNA(tRNA)-eEF1A-鸟苷-5'-三磷酸(GTP)与核糖体的氨酰基(A)位点的结合,肽易位后不带电的tRNA的释放,和核糖体回收。尽管YEF3在40多年前被发现,eEF3几乎只在酿酒酵母中表征。
    我们进行了一种体内遗传学方法,以评估eEF3在系统发育遥远的真菌物种中的功能保守性。
    我们发现来自鲁氏酵母和光滑假丝酵母(均属于子囊门)的eEF3,Ustilagomaydis(担子菌门),和性腺增生(单藻门),但不是构巢曲霉(子囊门),支持缺乏内源性YEF3基因的酿酒酵母的生长。我们还证明了eEF3是子囊菌C.glabrata和A.nidulans中的必需基因。
    鉴于大多数关于真菌翻译的现有知识仅来自酿酒酵母,我们在该生物体以外的发现显示了真菌伸长过程的变异性。我们还证明了eEF3在病原真菌中至关重要,开启了使用eEF3作为目标对抗念珠菌病的可能性。
    UNASSIGNED: Translation is a fundamental process of life. In eukaryotes, the elongation step of translation is highly conserved and is driven by eukaryotic translation elongation factors (eEF)1A and eEF2. A significant variation of the elongation is the activity of eukaryotic elongation factor (eEF) 3 in Saccharomyces cerevisiae encoded by the gene yeast elongation factor (YEF3) with orthologs in all fungal species, a few algae, and some protists. In S. cerevisiae, YEF3 is an essential gene and eEF3 plays a critical role in translation elongation, as it promotes binding of the ternary complex acylated-Transfer RNA (tRNA)-eEF1A-Guanosine-5\'-triphosphate (GTP) to the aminoacyl (A) site of the ribosome, the release of uncharged tRNAs after peptide translocation, and ribosome recycling. Even though YEF3 was discovered more than 40 years ago, eEF3 has been characterized almost exclusively in S. cerevisiae.
    UNASSIGNED: We undertook an in vivo genetic approach to assess the functional conservation of eEF3 across phylogenetically distant fungal species.
    UNASSIGNED: We found that eEF3 from Zygosaccharomyces rouxii and Candida glabrata (both belonging to phylum Ascomycota), Ustilago maydis (phylum Basidiomycota), and Gonapodya prolifera (phylum Monoblepharomycota), but not Aspergillus nidulans (phylum Ascomycota), supported the growth of S. cerevisiae lacking the endogenous YEF3 gene. We also proved that eEF3 is an essential gene in the ascomycetes C. glabrata and A. nidulans.
    UNASSIGNED: Given that most existing knowledge on fungal translation has only been obtained from S. cerevisiae, our findings beyond this organism showed variability in the elongation process in Fungi. We also proved that eEF3 is essential in pathogenic fungi, opening the possibility of using eEF3 as a target to fight candidiasis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    麦角甾醇是真菌质膜的必需成分。针对麦角甾醇生物合成(ERG)基因的抑制剂对于控制真菌病原体至关重要,包括稻瘟病菌,引起稻瘟病的真菌。然而,控制ERG基因表达的翻译机制在很大程度上仍未被探索。这里,我们显示Trm6/Trm61复合物催化米曲霉51个转移RNA(tRNA)中58位的动态N1-甲基腺苷(m1A58),在起始和延伸阶段都显著影响翻译。值得注意的是,tRNAm1A58主要通过增强eEF1-tRNA结合而不是影响tRNA丰度或带电来促进大多数同源密码子的延伸速度。m1A58的缺失导致ERG基因的翻译大幅减少,麦角固醇生产,and,因此,真菌毒力。同时靶向Trm6/Trm61复合物和麦角固醇生物合成途径显著改善稻瘟病防治。我们的发现证明了m1A58介导的翻译调节在麦角固醇产生和真菌感染中的重要作用。为杀菌剂的开发提供了潜在的策略。
    Ergosterols are essential components of fungal plasma membranes. Inhibitors targeting ergosterol biosynthesis (ERG) genes are critical for controlling fungal pathogens, including Magnaporthe oryzae, the fungus that causes rice blast. However, the translational mechanisms governing ERG gene expression remain largely unexplored. Here, we show that the Trm6/Trm61 complex catalyzes dynamic N1-methyladenosine at position 58 (m1A58) in 51 transfer RNAs (tRNAs) of M. oryzae, significantly influencing translation at both the initiation and elongation stages. Notably, tRNA m1A58 promotes elongation speed at most cognate codons mainly by enhancing eEF1-tRNA binding rather than affecting tRNA abundance or charging. The absence of m1A58 leads to substantial decreases in the translation of ERG genes, ergosterol production, and, consequently, fungal virulence. Simultaneously targeting the Trm6/Trm61 complex and the ergosterol biosynthesis pathway markedly improves rice blast control. Our findings demonstrate an important role of m1A58-mediated translational regulation in ergosterol production and fungal infection, offering a potential strategy for fungicide development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    核糖体是催化蛋白质生物合成的普遍保守的细胞机器。活性位点在巨大的进化保守性基础上,导致在包括细胞器核糖体在内的所有生命领域中核糖体的核心结构几乎相同。然而,在进化过程中,胞质核糖体的更多外周结构发生了变化,适应了新的功能和调节选择。扩增发生在核蛋白水平,包括更多和更大的核糖体蛋白,并在RNA水平上增加核糖体RNA的长度。核糖体RNA内的扩增以簇的形式出现在面向胞质核糖体外围的保守位点。最近的生化和结构工作揭示了rRNA特异性扩增片段(ESs)如何在翻译过程中招募因子以及它们如何调节细胞质中的翻译动力学。在这里,我们专注于酵母的最新工作,人和锥虫胞质核糖体,分别探索小亚基和大亚基中两种特异性rRNAESs的作用。虽然不存在单一的监管策略,ESs的缺失对蛋白质组稳定性和细胞适应性有影响,为定制的蛋白质生物合成提供迷人的进化工具。
    Ribosomes are universally conserved cellular machines that catalyze protein biosynthesis. The active sites underly immense evolutionary conservation resulting in virtually identical core structures of ribosomes in all domains of life including organellar ribosomes. However, more peripheral structures of cytosolic ribosomes changed during evolution accommodating new functions and regulatory options. The expansion occurred at the riboprotein level, including more and larger ribosomal proteins and at the RNA level increasing the length of ribosomal RNA. Expansions within the ribosomal RNA occur as clusters at conserved sites that face toward the periphery of the cytosolic ribosome. Recent biochemical and structural work has shed light on how rRNA-specific expansion segments (ESs) recruit factors during translation and how they modulate translation dynamics in the cytosol. Here we focus on recent work on yeast, human and trypanosomal cytosolic ribosomes that explores the role of two specific rRNA ESs within the small and large subunit respectively. While no single regulatory strategy exists, the absence of ESs has consequences for proteomic stability and cellular fitness, rendering them fascinating evolutionary tools for tailored protein biosynthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    不同的细菌种类有明显不同的世代时间,从大肠杆菌中20-30分钟到麻风分枝杆菌中大约两周。细胞中的翻译机制需要在每一代中合成新细胞的所有蛋白质。翻译的三个子过程,即,initiation,伸长率,和终止,与长代麻风分枝杆菌相比,短代细菌(SGB)(例如纳氏弧菌)有望在更强的选择压力下进行优化。起始效率取决于起始tRNA解码的起始密码子,由小亚基rRNA上的抗SD(aSD)序列解码的最佳Shine-Dalgarno(SD),以及可以嵌入启动信号并防止它们被解码的二级结构。延伸效率取决于tRNA库和密码子使用。在细菌中的终止效率主要取决于终止密码子的性质和紧邻终止密码子下游的核苷酸。通过将SGB与长代细菌(LGB)进行对比,我们预测(1)SGB有更多的核糖体RNA操纵子来产生核糖体,和更多的tRNA基因携带氨基酸到核糖体,(2)SGB使用AUG作为起始密码子和UAA作为终止密码子的基因百分比高于LGB,(3)SGB表现出比LGB更好的密码子和反密码子适应,和(4)SGB在翻译起始信号附近具有比LGB更弱的二级结构。SGB和LGB之间的这些差异在高表达基因中应该比其余基因更明显。我们提供了支持这些预测的经验证据。
    Different bacterial species have dramatically different generation times, from 20-30 min in Escherichia coli to about two weeks in Mycobacterium leprae. The translation machinery in a cell needs to synthesize all proteins for a new cell in each generation. The three subprocesses of translation, i.e., initiation, elongation, and termination, are expected to be under stronger selection pressure to optimize in short-generation bacteria (SGB) such as Vibrio natriegens than in the long-generation Mycobacterium leprae. The initiation efficiency depends on the start codon decoded by the initiation tRNA, the optimal Shine-Dalgarno (SD) decoded by the anti-SD (aSD) sequence on small subunit rRNA, and the secondary structure that may embed the initiation signals and prevent them from being decoded. The elongation efficiency depends on the tRNA pool and codon usage. The termination efficiency in bacteria depends mainly on the nature of the stop codon and the nucleotide immediately downstream of the stop codon. By contrasting SGB with long-generation bacteria (LGB), we predict (1) SGB to have more ribosome RNA operons to produce ribosomes, and more tRNA genes for carrying amino acids to ribosomes, (2) SGB to have a higher percentage of genes using AUG as the start codon and UAA as the stop codon than LGB, (3) SGB to exhibit better codon and anticodon adaptation than LGB, and (4) SGB to have a weaker secondary structure near the translation initiation signals than LGB. These differences between SGB and LGB should be more pronounced in highly expressed genes than the rest of the genes. We present empirical evidence in support of these predictions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    从mRNA合成蛋白质是一个能量密集和严格控制的生物过程。翻译延伸是翻译中协调良好的多因素步骤,可确保将氨基酸准确有效地添加到信使RNA(mRNA)序列中编码的新生肽链中。由于细胞状态和环境决定因素,它经历了动态调节。越来越多的研究表明,翻译延伸是通过多种反馈机制控制mRNA翻译的关键过程。分子伴侣是蛋白质稳态的关键参与者,以保持蛋白质合成之间的平衡,折叠,装配,和退化。含伴娘蛋白的无尾复合物多肽1(CCT)或无尾复合物多肽1环复合物(TRiC)是一种必需的真核分子伴侣,在协助细胞蛋白质折叠和抑制蛋白质聚集中起着重要作用。在这次审查中,我们概述了影响平移伸长的因素,关注分子伴侣在翻译伸长中的不同功能,包括它们如何影响翻译率和翻译后修饰。我们还提供了对分子伴侣CCT在真核蛋白质合成的延伸阶段发挥多种作用的机制的理解。
    Protein synthesis from mRNA is an energy-intensive and strictly controlled biological process. Translation elongation is a well-coordinated and multifactorial step in translation that ensures the accurate and efficient addition of amino acids to a growing nascent-peptide chain encoded in the sequence of messenger RNA (mRNA). Which undergoes dynamic regulation due to cellular state and environmental determinants. An expanding body of research points to translational elongation as a crucial process that controls the translation of an mRNA through multiple feedback mechanisms. Molecular chaperones are key players in protein homeostasis to keep the balance between protein synthesis, folding, assembly, and degradation. Chaperonin-containing tailless complex polypeptide 1 (CCT) or tailless complex polypeptide 1 ring complex (TRiC) is an essential eukaryotic molecular chaperone that plays an essential role in assisting cellular protein folding and suppressing protein aggregation. In this review, we give an overview of the factors that influence translation elongation, focusing on different functions of molecular chaperones in translation elongation, including how they affect translation rates and post-translational modifications. We also provide an understanding of the mechanisms by which the molecular chaperone CCT plays multiple roles in the elongation phase of eukaryotic protein synthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蛋白质合成的速率比许多折叠反应慢,并且根据编码蛋白质序列的同义密码子而变化。因此,同义密码子取代具有调节共翻译蛋白折叠机制的潜力,越来越多的蛋白质被鉴定为具有对密码子使用敏感的折叠机制。通常,这些蛋白质具有复杂的折叠途径和动力学稳定的天然结构。动力学稳定的蛋白质在其一生中只能折叠一次,因此,密码子介导的蛋白质折叠调控的先驱轮可以产生持久的影响。支持密码子使用在折叠中的重要作用,密码子使用的保守模式出现在同源基因家族中,暗示选择。尽管有这些令人兴奋的发展,仍然很少有实验方法能够量化细胞中的翻译伸长率和共翻译折叠机制,这挑战了生物学如何使用密码子来调节蛋白质折叠的预测性理解的发展。生物物理学年度评论的预期最终在线出版日期,第53卷是2024年5月。请参阅http://www。annualreviews.org/page/journal/pubdates的订正估计数。
    The rate of protein synthesis is slower than many folding reactions and varies depending on the synonymous codons encoding the protein sequence. Synonymous codon substitutions thus have the potential to regulate cotranslational protein folding mechanisms, and a growing number of proteins have been identified with folding mechanisms sensitive to codon usage. Typically, these proteins have complex folding pathways and kinetically stable native structures. Kinetically stable proteins may fold only once over their lifetime, and thus, codon-mediated regulation of the pioneer round of protein folding can have a lasting impact. Supporting an important role for codon usage in folding, conserved patterns of codon usage appear in homologous gene families, hinting at selection. Despite these exciting developments, there remains few experimental methods capable of quantifying translation elongation rates and cotranslational folding mechanisms in the cell, which challenges the development of a predictive understanding of how biology uses codons to regulate protein folding.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    叶绿体是负责光合作用和调节植物正常生长的细胞器。尽管翻译延伸因子在叶绿体发育中起重要作用,高等植物中叶绿体翻译伸长因子的功能研究仍然非常稀疏。这里,我们获得了一个表现出幼苗致死白化表型的水稻突变体,并将其命名为白化和致死幼苗1(als1)。始终如一,光合色素含量低,在als1突变体叶片中观察到畸形的叶绿体和光合作用缺陷。基于图的克隆实验表明,als1突变体在Os02g0595700中有一个T碱基插入,引起移码和提前终止密码子。ALS1编码GTP结合蛋白EF-Tu,在叶绿体蛋白质翻译中充当翻译延伸因子。发现ALS1在整个植物中表达,在幼叶中表达水平最高。此外,ALS1位于叶绿体中,而截短的als1通常不能位于叶绿体中。此外,ALS1突变显著影响下游基因的表达,如与叶绿素生物合成相关的基因,光合作用以及叶绿体发育。这些结果表明ALS1是叶绿体发育和植物生长的关键调节剂。
    Chloroplasts are the organelles responsible for photosynthesis and regulate normal plant growth. Although translation elongation factors play important roles in chloroplast development, functional studies of chloroplast translation elongation factors in higher plants remain very sparse. Here, we obtained a rice mutant exhibiting seedling-lethal albino phenotype and named it albino and lethal seedling 1 (als1). Consistently, low content of photosynthetic pigments, malformed chloroplasts and defective photosynthesis were observed in als1 mutant leaves. Map-based cloning experiment showed that als1 mutant had a T base insertion in Os02g0595700, causing a frame shift and premature stop codon. ALS1 encoded a GTP-binding protein EF-Tu, which acts as a translation elongation factor in chloroplast protein translation. ALS1 was found to be expressed throughout plant with highest expression level in young leaves. Moreover, ALS1 was located in chloroplast, whereas the truncated als1 could not normally be located in chloroplast. Additionally, the ALS1 mutation significantly influenced the expression of downstream genes, such as genes relevant to chlorophyll biosynthesis, photosynthesis as well as chloroplast development. These results show that ALS1 acts as a key regulator of chloroplast development and plant growth.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    核糖体停顿是包括蛋白质折叠和定位在内的共翻译事件的关键部分。然而,延伸的核糖体停顿会导致核糖体碰撞,导致核糖体拯救途径的激活以及蛋白质和mRNA的周转。虽然这种关系已经为人所知,关于核糖体停滞在定量水平上如何影响翻译持续时间的研究很少。我们采用了一种用于测量伸长时间的方法,并将其用于酿酒酵母中,以量化伸长失速的影响。我们发现,在含有ArgCGA密码子重复诱导的失速的转录本中,Hel2介导的蛋白质表达和mRNA水平的剂量依赖性降低,延长延迟约数分钟。在包含非最佳Leu密码子同义取代的转录物中,蛋白质和mRNA水平下降,以及类似的伸长延迟,但这是通过非Hel2介导的机制发生的。最后,我们发现Dhh1选择性增加蛋白质表达,mRNA水平,和伸长率。这表明尽管延长停滞持续时间相似,但不同的翻译不良的mRNA将激活不同的拯救途径。一起来看,这些结果为监测翻译以及Hel2和Dhh1在介导核糖体暂停事件中的作用提供了新的定量机制。
    Ribosomal pauses are a critical part of cotranslational events including protein folding and localization. However, extended ribosome pauses can lead to ribosome collisions, resulting in the activation of ribosome rescue pathways and turnover of protein and mRNA. While this relationship has been known, there has been little exploration of how ribosomal stalls impact translation duration at a quantitative level. We have taken a method used to measure elongation time and adapted it for use in Saccharomyces cerevisiae to quantify the impact of elongation stalls. We find, in transcripts containing Arg CGA codon repeat-induced stalls, a Hel2-mediated dose-dependent decrease in protein expression and mRNA level and an elongation delay on the order of minutes. In transcripts that contain synonymous substitutions to nonoptimal Leu codons, there is a decrease in protein and mRNA levels, as well as similar elongation delay, but this occurs through a non-Hel2-mediated mechanism. Finally, we find that Dhh1 selectively increases protein expression, mRNA level, and elongation rate. This indicates that distinct poorly translated mRNAs will activate different rescue pathways despite similar elongation stall durations. Taken together, these results provide new quantitative mechanistic insight into the surveillance of translation and the roles of Hel2 and Dhh1 in mediating ribosome pausing events.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    RNA翻译在真核细胞中受到严格控制以调节基因表达和维持蛋白质组稳态。RNA结合蛋白,翻译因素,和细胞信号通路都调节翻译过程。翻译缺陷涉及多种神经系统疾病,包括肌萎缩侧索硬化症(ALS)。ALS是一种进行性神经退行性疾病,在全球范围内构成了重大的公共卫生挑战。在过去的几年里,在了解ALS的遗传学和发病机制方面取得了巨大进展。RNA代谢障碍,包括RNA翻译,与ALS密切相关。这里,我们首先介绍了在生理和应激条件下翻译调节的一般机制,并回顾了神经退行性疾病中翻译缺陷的著名例子。然后,我们将重点放在与ALS相关的基因上,并讨论了翻译如何受到各种突变基因的影响以及ALS中重复扩展介导的非规范翻译的最新进展。
    RNA translation is tightly controlled in eukaryotic cells to regulate gene expression and maintain proteome homeostasis. RNA binding proteins, translation factors, and cell signaling pathways all modulate the translation process. Defective translation is involved in multiple neurological diseases including amyotrophic lateral sclerosis (ALS). ALS is a progressive neurodegenerative disorder and poses a major public health challenge worldwide. Over the past few years, tremendous advances have been made in the understanding of the genetics and pathogenesis of ALS. Dysfunction of RNA metabolisms, including RNA translation, has been closely associated with ALS. Here, we first introduce the general mechanisms of translational regulation under physiological and stress conditions and review well-known examples of translation defects in neurodegenerative diseases. We then focus on ALS-linked genes and discuss the recent progress on how translation is affected by various mutant genes and the repeat expansion-mediated non-canonical translation in ALS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    体外翻译系统是研究翻译调节的有用生化工具。尽管从哺乳动物中制备具有翻译能力的细胞提取物通常是一个挑战,市售兔网织红细胞裂解物(RRL)是个例外.然而,其有效使用,研究RRL中核糖体等翻译机制,提出了一个分析障碍。为了克服这个问题,混合翻译系统,这是基于将纯化的人核糖体补充到核糖体耗尽的RRL中,已经开发了。这里,我们描述了该系统的分步方案,以研究由缺乏核糖体蛋白翻译后修饰的核糖体驱动的翻译。此外,我们将这种方法与先前开发的报告mRNA相结合,以评估翻译延伸的持续性。该方案可用于研究异源核糖体的效力。
    In vitro translation systems are a useful biochemical tool to research translational regulation. Although the preparation of translation-competent cell extracts from mammals has often been a challenge, the commercially available rabbit reticulocyte lysate (RRL) is an exception. However, its valid use, investigating the mechanism of translation machinery such as ribosomes in RRL, presents an analytic hurdle. To overcome this issue, the hybrid translation system, which is based on the supplementation of purified human ribosomes into ribosome-depleted RRL, has been developed. Here, we describe the step-by-step protocol of this system to study translation driven by ribosomes lacking post-translational modifications of the ribosomal protein. Moreover, we combined this approach with a previously developed reporter mRNA to assess the processivity of translation elongation. This protocol could be used to study the potency of heterologous ribosomes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号