transient absorption spectroscopy

  • 文章类型: Journal Article
    由于缓慢的多质子耦合电子转移和不利的载流子复合,在光电化学氮还原反应(PECNRR)中产生氨的有效电子供应仍然具有挑战性。在这里,据报道,用与MIL-100(Fe)结合的硫配体(InPQDs-S2-)修饰的InP量子点作为PECNRR的基准催化剂。实验发现,MIL-100(Fe)可以通过Fe─S键作为桥与InPQDs-S2-结合,以促进电子转移。Fe─S键的形成可以促进电子在52ps内从InP量子点的无机S2-配体转移到MIL-100(Fe)的Fe金属位点,确保更有效的电子转移和电子空穴分离的时间分辨光谱证实。更重要的是,光致载流子转移的过程可以通过原位衰减全反射表面增强红外测试来追踪,证明有效的电子转移可以促进N=N解离和N2氢化。因此,InPQDs-S2-/MIL-100(Fe)具有出色的性能,出色的NH3产率为0.58µmolcm-2h-1(比MIL-100(Fe)高3.09倍)。这项工作揭示了量子点修饰的金属有机骨架中PECNRR的重要超快动力学机制,为合理设计高效MOFs光电阴极提供了新的指导。
    Effective electron supply to produce ammonia in photoelectrochemical nitrogen reduction reaction (PEC NRR) remains challenging due to the sluggish multiple proton-coupled electron transfer and unfavorable carrier recombination. Herein, InP quantum dots decorated with sulfur ligands (InP QDs-S2-) bound to MIL-100(Fe) as a benchmark catalyst for PEC NRR is reported. It is found that MIL-100(Fe) can combined with InP QDs-S2- via Fe─S bonds as bridge to facilitate the electron transfer by experimental results. The formation of Fe─S bonds can facilitate electron transfer from inorganic S2- ligands of InP QDs to the Fe metal sites of MIL-100(Fe) within 52 ps, ensuring a more efficient electron transfer and electron-hole separation confirmed by the time-resolved spectroscopy. More importantly, the process of photo-induced carrier transfer can be traced by in situ attenuated total reflection surface-enhanced infrared tests, certifying that the effective electron transfer can promote N≡N dissociation and N2 hydrogenation. As a result, InP QDs-S2-/MIL-100(Fe) exhibits prominent performance with an outstanding NH3 yield of 0.58 µmol cm-2 h-1 (3.09 times higher than that of MIL-100(Fe)). This work reveals an important ultrafast dynamic mechanism for PEC NRR in QDs modified metal-organic frameworks, providing a new guideline for the rational design of efficient MOFs photocathodes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Te-MoTe2-MoSe2/ZnOS方案异质结被设计用于确定可持续HER操作中的高级氧化还原能力。光物理研究已经建立了光诱导电荷载流子的稳态转移,而通过最先进的超快瞬态吸收和优化的5wt%Te-MoTe2-MoSe2/ZnO异质结构的辐照XPS分析实现了改进的转移动力学。2.5、5和7.5wt%Te-MoTe2-MoSe2/ZnO光催化剂(2.5MTMZ,5MTMZ和7.5MTMZ)的HER性能比原始ZnO高2.8、3.3和3.1倍,具有35.09%的表观量子效率,在4.45、5.25和4.92mmol/gcat/h的HER速率下,分别为41.42%和38.79%,分别。电化学水分解实验表明,2.5MTMZ和5MTMZ异质结构的583和566mV过电位值较低,以实现HER的10mAcm-2电流密度,OER为961和793mV,分别。对于优化的5MTMZ光催化剂,与裸ZnO的52.92ps相比,界面电荷转移步骤的寿命动力学衰减被评估为138.67ps。
    Te-MoTe2-MoSe2/ZnO S-scheme heterojunctions are engineered to ascertain the advanced redox ability in sustainable HER operations. Photo-physical studies have established the steady state transfer of photo-induced charge carriers whereas an improved transfer dynamics realized by state-of-art ultrafast transient absorption and irradiated-XPS analysis of optimized 5wt% Te-MoTe2-MoSe2/ZnO heterostructure. 2.5, 5, and 7.5wt% Te-MoTe2-MoSe2/ZnO photocatalysts (2.5MTMZ, 5MTMZ and 7.5MTMZ) exhibited 2.8, 3.3, and 3.1-fold higher HER performance than pristine ZnO with marvelous apparent quantum efficiency of 35.09%, 41.42% and 38.79% at HER rate of 4.45, 5.25, and 4.92 mmol/gcat/h, respectively. Electrochemical water splitting experiments manifest subdued 583 and 566 mV overpotential values of 2.5MTMZ and 5MTMZ heterostructures to achieve 10 mA cm-2 current density for HER, and 961 and 793 mV for OER, respectively. For optimized 5MTMZ photocatalyst, lifetime kinetic decay of interfacial charge transfer step is evaluated to be 138.67 ps as compared to 52.92 ps for bare ZnO.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    最近,基于咔唑的自组装单层(SAM)被广泛用作倒置钙钛矿太阳能电池(PSC)中的有效空穴选择层(HSLs)。然而,由于它们的两亲性,这些SAM倾向于在溶剂中聚集,阻碍在ITO衬底上形成单层,并且阻碍钙钛矿中的深缺陷的有效钝化。在这项研究中,一系列新的SAM,包括DPA-B-PY,CBZ-B-PY,POZ-B-PY,POZ-PY,POZ-T-PY,合成POZ-BT-PY,将其用作界面修复器并涂覆在CNphSAM的顶部,以在有效的反向PSC中形成稳健的CNphSAM@伪平面单层作为HSL。CNphSAM@伪平面单层策略可实现与钙钛矿的良好对齐界面,协同促进钙钛矿晶体生长,改善电荷提取/传输,和最小化非辐射界面复合损失。因此,POZ-BT-PY改性的PSC实现了高达24.45%的惊人增强的太阳能效率以及82.63%的填充因子。此外,宽带隙PSC实现超过19%的效率。用CNphSAM@假平面单层处理后,还展示了基于PM6:BTP-eC9混合物的非富勒烯有机光伏(OPV),达到17.07%的效率。重要的是,与对照对应物相比,这些修饰的PSC和OPV在各种测试条件下都显示出显著改善的稳定性.
    Lately, carbazole-based self-assembled monolayers (SAMs) are widely employed as effective hole-selective layers (HSLs) in inverted perovskite solar cells (PSCs). Nevertheless, these SAMs tend to aggregate in solvents due to their amphiphilic nature, hindering the formation of a monolayer on the ITO substrate and impeding effective passivation of deep defects in the perovskites. In this study, a series of new SAMs including DPA-B-PY, CBZ-B-PY, POZ-B-PY, POZ-PY, POZ-T-PY, and POZ-BT-PY are synthesized, which are employed as interfacial repairers and coated atop CNph SAM to form a robust CNph SAM@pseudo-planar monolayer as HSL in efficient inverted PSCs. The CNph SAM@pseudo-planar monolayer strategy enables a well-aligned interface with perovskites, synergistically promoting perovskite crystal growth, improving charge extraction/transport, and minimizing nonradiative interfacial recombination loss. As a result, the POZ-BT-PY-modified PSC realizes an impressively enhanced solar efficiency of up to 24.45% together with a fill factor of 82.63%. Furthermore, a wide bandgap PSC achieving over 19% efficiency. Upon treatment with the CNph SAM@pseudo-planar monolayer, also demonstrates a non-fullerene organic photovoltaics (OPVs) based on the PM6:BTP-eC9 blend, which achieves an efficiency of 17.07%. Importantly, these modified PSCs and OPVs all show remarkably improved stability under various testing conditions compared to their control counterparts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    混合的N-杂环卡宾(NHC)/吡啶基铁(II)配合物最近引起了广泛关注,因为它们具有作为由地球丰富的元素制成的光催化剂和光敏剂的潜力。它们成功实施的最决定性的挑战是最低三重态金属到配体电荷转移态(3MLCT)的寿命,其通常经由三重态金属中心(3MC)状态衰减回到基态。我们通过变温超快瞬态吸收光谱法揭示了具有四个NHC供体的三足铁(II)双(吡啶)络合物异构体反式和顺式-[Fe(pdmi)2]2显示出3MLCT→3MC的种群转移具有非常不同的障碍,并通过计算手段使其合理化。虽然反式-[Fe(pdmi)2]2+具有不可观察的激活屏障,顺式异构体表现出492cm-1的势垒,导致77K的纳秒3MLCT寿命。在半经典马库斯理论的背景下分析了动力学和量子化学数据,揭示了高重组能和小的电子耦合在两个三重态之间。这突出了详细的结构控制和动力学知识对于从第一行过渡金属如铁合理设计光敏剂的重要性。
    Mixed N-heterocyclic carbene (NHC) / pyridyl iron(II) complexes have attracted a great deal of attention recently because of their potential as photocatalysts and light sensitizers made from Earth-abundant elements. The most decisive challenge for their successful implementation is the lifetime of the lowest triplet metal-to-ligand charge transfer state (3MLCT), which typically decays via a triplet metal-centered (3MC) state back to the ground state. We reveal by variable-temperature ultrafast transient absorption spectroscopy that the tripodal iron(II) bis(pyridine) complex isomers trans- and cis-[Fe(pdmi)2]2+ with four NHC donors show 3MLCT→3MC population transfers with very different barriers and rationalize this by computational means. While trans-[Fe(pdmi)2]2+ possesses an unobservable activation barrier, the cis isomer exhibits a barrier of 492 cm-1, which leads to a nanosecond 3MLCT lifetime at 77 K. The kinetic and quantum chemical data were analyzed in the context of semi-classical Marcus theory revealing a high reorganization energy and small electronic coupling between the two triplet states. This highlights the importance of detailed structural control and kinetic knowledge for the rational design of photosensitizers from first row transition metals such as iron.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于三重激发态的长寿命衰减,广泛的努力已经致力于有效的三重态生成,用于涵盖用于光子上转换的三重态-三重态an灭的应用,光环加成和光氧化还原催化。在候选人中,由于在系统间交叉过程中更容易的自旋翻转和可忽略的能量损失,纳米晶体-分子复合物在三重态生成方面受到了极大的关注。然而,由于复杂的能级排列和不可避免的缺陷状态,从纳米晶体(NC)到分子的三重态能量转移(TET)在实际情况下可能非常复杂,通常涉及与TET竞争的激发态的各种衰变路径。了解此类复合物中详细的载流子动力学对于相关应用是非常必要的。这里,通过精确调节CdSeNC的尺寸,合成了具有II型能级排列的CdSe-TCA(5-并四苯羧酸)络合物。基于一系列的光谱测量,特别是瞬态吸收(TA)光谱,结果显示了各种载体动力学,包括空穴转移介导的TET,Förster共振能量转移(FRET)和载流子捕获。尽管发现CdSeNC中缺陷态的载流子捕获与从CdSe到TCA的TET无关,FRET被证明与TET过程竞争。对于此类复合物中的有效TET,应当抑制FRET和缺陷状态。这项研究可以为了解NC分子复合物中三重态生成和相关光电子应用的载体动力学竞争提供进一步的见解。
    Owing to the long-lived decay of triplet excited state, extensive efforts have been devoted to efficient triplet generation for applications covering triplet-triplet annihilation for photon upconversion, photocycloaddition and photoredox catalysis. Among the candidates, nanocrystal-molecule complexes have received tremendous attention for triplet generation because of easier spin flip and negligible energy loss during intersystem crossing. However, the triplet energy transfer (TET) from nanocrystals (NCs) to molecules can be very complicated in actual situation due to intricate energy level alignment and inevitable defect states, which often involves various decay pathes of the excited state competing with TET. Understanding the detailed carrier dynamics in such complexes is strongly necessary for related applications. Here, a CdSe-TCA (5-tetracene carboxylic acid) complex with a Type-II like energy level alignment is synthesized through precisely adjusting the dimension of CdSe NC. Based on series of spectral measurements, especially the transient absorption (TA) spectroscopy, the results show various carrier dynamics including hole-transfer-mediated TET, Förster resonance energy transfer (FRET) and carrier trapping. Although the carrier trapping by defect states in CdSe NC is revealed not associated with the TET from CdSe to TCA, the FRET is proved to competing with the TET process. Both the FRET and defect states should be refrained for efficient TET in such complexes. This study could provide further insight for understanding the carrier dynamics competition in NC-molecule complexes for triplet generation and benefit related optoelectronics applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    功能性人工光合装置的发展依赖于对专业光催化剂所涉及的机械方面的理解。长期以来,人们一直在探索改性铁卟啉作为光诱导二氧化碳(CO2)还原为太阳能燃料的有效催化剂。尽管在均相催化方面取得了进展,下一代催化剂的开发需要完全了解在催化剂活化底物之前和之后发生的基本光诱导过程。在这项工作中,我们采用最先进的纳秒光学瞬态吸收光谱装置,具有双激发能力,以诱导电荷积累并触发CO2还原为一氧化碳(CO)。我们的仿生系统由尿素改性的铁(III)四苯基卟啉(UrFeIII)催化剂组成,用作光敏剂的原型[Ru(bpy)3]2+(bpy=2,2'-联吡啶),和抗坏血酸钠作为电子供体。在惰性气氛下,我们表明,随着跟踪光生UrFeII和UrFeI还原物种的命运,可以在催化剂上连续积累两个电子。在CO2的存在下,催化循环开始,提供关于UrFe催化剂在其正式FeI氧化态的CO2活化的进一步证据。
    The development of functional artificial photosynthetic devices relies on the understanding of mechanistic aspects involved in specialized photocatalysts. Modified iron porphyrins have long been explored as efficient catalysts for the light-induced reduction of carbon dioxide (CO2) towards solar fuels. In spite of the advancements in homogeneous catalysis, the development of the next generation of catalysts requires a complete understanding of the fundamental photoinduced processes taking place prior to and after activation of the substrate by the catalyst. In this work, we employ a state-of-the-art nanosecond optical transient absorption spectroscopic setup with a double excitation capability to induce charge accumulation and trigger the reduction of CO2 to carbon monoxide (CO). Our biomimetic system is composed of a urea-modified iron(III) tetraphenylporphyrin (UrFeIII) catalyst, the prototypical [Ru(bpy)3]2+ (bpy=2,2\'-bipyridine) used as a photosensitizer, and sodium ascorbate as an electron donor. Under inert atmosphere, we show that two electrons can be successively accumulated on the catalyst as the fates of the photogenerated UrFeII and UrFeI reduced species are tracked. In the presence of CO2, the catalytic cycle is kick-started providing further evidence on CO2 activation by the UrFe catalyst in its formal FeI oxidation state.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    来自地球丰富的O2和H2O分子的H2O2的光合作用为太阳能到化学转化提供了生态友好的途径。持续的挑战是调节光催化剂的光/热动力学朝向有效的电子-空穴分离,同时保持用于电荷转移的有效驱动力。这种情况是通过子带辅助Z方案的协同策略实现的,该策略用于通过直接O2还原和H2O氧化而无需牺牲剂的有效H2O2光合作用。优化的SnS2/g-C3N4异质结在纯水中的可见光照射(λ>400nm)下对H2O2生产显示出623.0µmolg-1h-1的高反应性,比原始g-C3N4(100.5µmolg-1h-1)高≈6倍。光动力学表征和理论计算表明,增强的光活性是由于显着提高了捕获的活性电子的寿命(子带中的204.9ps和浅带中的>2.0ns)和高度改善的O2活化,作为形成合适的子带和催化位点以及用于电荷转移的低无吉布斯能的结果。此外,Z-Scheme异质结产生并维持O2和H2O转化为高附加值H2O2的大驱动力。
    Photosynthesis of H2O2 from earth-abundant O2 and H2O molecules offers an eco-friendly route for solar-to-chemical conversion. The persistent challenge is to tune the photo-/thermo- dynamics of a photocatalyst toward efficient electron-hole separation while maintaining an effective driving force for charge transfer. Such a case is achieved here by way of a synergetic strategy of sub-band-assisted Z-Scheme for effective H2O2 photosynthesis via direct O2 reduction and H2O oxidation without a sacrificial agent. The optimized SnS2/g-C3N4 heterojunction shows a high reactivity of 623.0 µmol g-1 h-1 for H2O2 production under visible-light irradiation (λ > 400 nm) in pure water, ≈6 times higher than pristine g-C3N4 (100.5 µmol g-1 h-1). Photodynamic characterizations and theoretical calculations reveal that the enhanced photoactivity is due to a markedly promoted lifetime of trapped active electrons (204.9 ps in the sub-band and >2.0 ns in a shallow band) and highly improved O2 activation, as a result of the formation of a suitable sub-band and catalytic sites along with a low Gibbs-free energy for charge transfer. Moreover, the Z-Scheme heterojunction creates and sustains a large driving force for O2 and H2O conversion to high value-added H2O2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    自1948年由Clar首次合成以来,二甲苯基-一种通过萘周围位置完全连接的萘低聚物-在二甲苯基家族中获得了特别的关注,对其独特的化学物质感兴趣,结构,光电和单光子发射特性。在这项研究中,我们介绍了一种新的合成途径,通过完全的全烷基化提高二甲撑衍生物的溶解度,同时也有助于在海湾位置延伸。这种方法不仅拓宽了二甲撑化学通用性的范围,而且为开发可溶液加工的新型多边缘纳米石墨烯和通过拓扑边缘结构定制电子能级开辟了新的途径。我们的发现包括全面的结构和光谱表征,其中包括合成的全烷基化二甲撑及其亚苯基稠合衍生物的瞬态吸收光谱和光物理。
    Since its first synthesis by Clar in 1948, terrylene - a fully connected ternaphthalene oligomer via naphthalene\'s peri-positions - has gained special focus within the rylene family, drawing interest for its unique chemical, structural, optoelectronic and single photon emission properties. In this study, we introduce a novel synthetic pathway that enhances the solubility of terrylene derivatives through complete peri-alkylation, while also facilitating extensions at the bay-positions. This approach not only broadens the scope of terrylene\'s chemical versatility but also opens new avenues for developing solution processable novel multi-edge nanographenes and tailoring electronic energy levels through topological edge structures. Our findings include a comprehensive structural and spectroscopic characterization along with transient absorption spectroscopy and photophysics of both the synthesized peri-alkylated terrylene and its phenylene-fused derivative.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    使用脉冲激光沉积(PLD)技术对c-蓝宝石衬底上的CVD生长的单层MoS2薄膜进行真空退火,并用(111)NiO外延薄膜覆盖。时间,能源,和偏振分辨光学技术用于了解覆盖对单层MoS2的激子性质的影响。已经观察到,在加帽后,光致发光(PL)光谱中的trion贡献增加,表明导带中电子浓度的增强。这归因于封顶驱动的来自硫空位(VS)位点的物理吸附空气分子的还原。注意,空气分子充当VS-供体的钝化剂。低温偏振分辨PL光谱和超快泵浦和探针瞬态吸收光谱(TAS)显示,封装后系统中的双激子数量增加。TAS研究进一步揭示了加帽样品中A和B激子的寿命更长,这意味着加帽后激子的非辐射复合率降低。还观察到,在加盖的样品中,在足够高的泵浦功率下,K/K谷充满了三重奏。这归因于高能光激发载流子的非辐射复合率较低,以及电子或空穴从高能袋向K/K'谷的更快转移。该研究进一步揭示了激子和三原子中不同的多体效应。
    CVD grown monolayer MoS2films on c-sapphire substrates are vacuum annealed and capped with (111) NiO epitaxial films using pulsed laser deposition technique. Time, energy and polarization resolved optical techniques are used to understand the effect of capping on the excitonic properties of the monolayer MoS2. It has been observed that trion contribution in the photoluminescence (PL) spectra increases after the capping, suggesting an enhancement of electron concentration in the conduction band. This has been attributed to the capping driven reduction of physisorbed air molecules from the sulphur vacancy (VS) sites. Note that the air molecules act as passivating agents for theVS-donors. Low temperature polarization resolved PL spectroscopy and ultrafast pump and probe transient absorption spectroscopy (TAS) show an increase of the biexcitonic population in the system after the encapsulation. The TAS study further reveals longer lifetime for both A and B excitons in capped samples implying a reduction of non-radiative recombination rate of the excitons after the capping. It has also been observed that in the capped samples,K/K\'valleys are populated with trions under sufficiently high pump powers. This has been attributed to the lower non-radiative recombination rates of the high energy photoexcited carriers and the faster transfer of either electrons or holes from the high energy pockets to theK/K\'valleys. The study further reveals different many-body effects in excitons and trions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    考虑到物理和化学在材料界面的重要性,我们首次探索了多元硫系半导体Cu2NiSnS4纳米粒子(CNTSNP)与贵金属(Au)的耦合,形成Au-CNTS纳米异质结构(NHSs)。Au-CNTSNHSs是通过简单简便的热注射方法合成的。采用协同实验和理论方法来表征结构,光学,Au-CNTSNHSs的电学性质。吸收光谱表明在紫外-可见-近红外(UV-Vis-NIR)区域的光吸收增强和加宽,循环伏安法(CV)读数证实了这一点。CV测量显示II型交错带对齐,在Au-CNTS/CdS和CNTS/CdS界面处的导带偏移(CBO)为0.21和0.23eV,分别。互补的第一原理密度泛函理论(DFT)计算预测了稳定的Au-CNTSNHSs的形成,金纳米粒子将其电子转移到CNTS。此外,我们使用超快瞬态吸收实验的界面分析表明,与原始CNTS相比,Au-CNTSNHSs促进了光激发电荷载流子的有效传输和分离。瞬态测量进一步揭示了从Au纳米颗粒到CNTS的等离子体电子转移。我们先进的分析和发现将促进对新功能材料及其光/电催化和光电器件应用的研究。
    Considering the importance of physics and chemistry at material interfaces, we have explored the coupling of multinary chalcogenide semiconductor Cu2NiSnS4 nanoparticles (CNTS NPs) for the first time with the noble metal (Au) to form Au-CNTS nano-heterostructures (NHSs). The Au-CNTS NHSs is synthesized by a simple facile hot injection method. Synergistic experimental and theoretical approaches are employed to characterize the structural, optical, and electrical properties of the Au-CNTS NHSs. The absorption spectra demonstrate enhanced and broadened optical absorption in the ultraviolet-visible-near-infrared (UV-Vis-NIR) region, which is corroborated by cyclic voltammetry (CV) readings. CV measurements show type II staggered band alignment, with a conduction band offset (CBO) of 0.21 and 0.23 eV at the Au-CNTS/CdS and CNTS/CdS interface, respectively. Complementary first-principles density functional theory (DFT) calculations predict the formation of a stable Au-CNTS NHSs, with the Au nanoparticle transferring its electrons to the CNTS. Moreover, our interface analysis using ultrafast transient absorption experiments demonstrate that the Au-CNTS NHSs facilitates efficient transport and separation of photoexcited charge carriers when compared to pristine CNTS. The transient measurements further reveal a plasmonic electronic transfer from the Au nanoparticle to CNTS. Our advanced analysis and findings will prompt investigations into new functional materials and their photo/electrocatalysis and optoelectronic device applications in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号