transcomplementation

  • 文章类型: Journal Article
    感染花粉病毒的植物的混合感染,umbravirus,和/或双叶病毒样相关RNA(tlaRNA)产生独特的病毒疾病复合物,举例说明“辅助依赖”相互作用,一种病毒协同作用,当缺乏编码某些蛋白质产物的基因的“依赖”病毒完成其感染周期时,可以利用共感染“辅助”病毒编码的互补蛋白质。虽然许多研究都集中在polerovirus-umbravirus或polerovirus-tlaRNA相互作用上,直到最近才开始探索umbravirus-tlaRNA的相互作用。为了扩大对此类疾病复合物中umbravirus-tlaRNA相互作用的有限理解,我们建立了多角病毒萝卜黄病毒(TuYV)的各种共感染配对,umbravirus胡萝卜斑驳病毒(CMoV),和三种不同的tlaRNAs-胡萝卜红叶病毒aRNAs(CRLVaRNAs)γ和sigma,和TuYVaRNAST9-在模型植物Nicotianabenthamiana中,然后研究了这些不同的共感染对宿主体内tlaRNA系统运动的影响,关于病毒的积累,以及蚜虫和这些病毒的机械传播。我们发现单独的CMoV可以支持每个tlaRNA的系统运动,使这成为证明umbravirus和tlaRNAs之间相互作用的第二份报告。我们还首次报道CMoV也可以赋予tlaRNAssigma和ST9机械传递性,并且这些tlaRNAs与TuYV和CMoV的共感染增加了TuYV可以与CMoV机械共传递的效率。
    Mixed infections of a plant infecting polerovirus, umbravirus, and/or tombusvirus-like associated RNAs (tlaRNAs) produce unique virus disease complexes that exemplify \"helper-dependence\" interactions, a type of viral synergism that occurs when a \"dependent\" virus that lacks genes encoding for certain protein products necessary for it to complete its infection cycle can utilize complementary proteins encoded by a co-infecting \"helper\" virus. While much research has focused on polerovirus-umbravirus or polerovirus-tlaRNA interactions, only recently have umbravirus-tlaRNA interactions begun to be explored. To expand on the limited understanding of umbravirus-tlaRNA interactions in such disease complexes, we established various co-infection pairings of the polerovirus turnip yellows virus (TuYV), the umbravirus carrot mottle virus (CMoV), and three different tlaRNAs-carrot red leaf virus aRNAs (CRLVaRNAs) gamma and sigma, and the TuYVaRNA ST9-in the model plant Nicotiana benthamiana, then investigated the effects of these different co-infections on tlaRNA systemic movement within the host, and on virus accumulation, and aphid and mechanical transmission of each of these viruses. We found that CMoV alone could support systemic movement of each of the tlaRNAs, making this the second report to demonstrate such an interaction between an umbravirus and tlaRNAs. We also report for the first time that CMoV could also impart mechanical transmissibility to the tlaRNAs sigma and ST9, and that co-infections of either of these tlaRNAs with both TuYV and CMoV increased the efficiency with which TuYV could be mechanically co-transmitted with CMoV.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:SCN5A的致病变异,编码心脏Na+通道α亚基的基因Nav1.5,导致危及生命的心律失常,例如,Brugada综合征,心脏传导缺陷和长QT综合征。每个Nav1.5突变对通道运输和门控能力具有独特后果的事实为这种表型的多样性奠定了基础。最近,我们确定钠通道α亚基Nav1.5,Nav1.1和Nav1.2可以二聚化,因此,解释了一些Nav1.5致病变体对WT通道产生显性负效应的效力,要么是贩运不足,要么是配对门控。
    目的:本研究试图检查Nav1.5通道是否可以合作,或彼此互补,拯救Na+电流(INa)。这种机制可能有助于解释在携带Na通道致病变体的家族成员中经常观察到的基因型-表型不一致。
    方法:使用膜片钳和免疫细胞化学分析来研究分别用WT和3种突变通道转染的HEK293细胞和大鼠新生心肌细胞中的生物物理特性和细胞定位,所述突变通道根据其特定运输和/或门控特性选择。
    结果:如先前报道,在HEK293细胞中单独表达的突变通道G1743R和R878C均消除了INa,G1743R通过贩运缺陷和R878C通过门控缺陷。这里,我们显示G1743R和R878C无功能通道的共表达导致INa的部分挽救,展示了Nav1.5α亚基的合作贩运。令人惊讶的是,我们还显示了一种合作机制,即R878C门控缺陷通道能够挽救C末端截短的R1860X(ΔCter)变体的缓慢失活动力学,建议耦合门控。
    结论:总而言之,我们的结果增加了Nav渠道能够相互作用和调节彼此的贩运和门控的证据,该特征可能有助于解释经常在携带Na通道致病变体的亲属成员之间观察到的基因型-表型不一致。
    BACKGROUND: Pathogenic variants in SCN5A, the gene encoding the cardiac Na+ channel α-subunit Nav1.5, result in life-threatening arrhythmias, e.g., Brugada syndrome, cardiac conduction defects and long QT syndrome. This variety of phenotypes is underlied by the fact that each Nav1.5 mutation has unique consequences on the channel trafficking and gating capabilities. Recently, we established that sodium channel α-subunits Nav1.5, Nav1.1 and Nav1.2 could dimerize, thus, explaining the potency of some Nav1.5 pathogenic variants to exert dominant-negative effect on WT channels, either by trafficking deficiency or coupled gating.
    OBJECTIVE: The present study sought to examine whether Nav1.5 channels can cooperate, or transcomplement each other, to rescue the Na+ current (INa). Such a mechanism could contribute to explain the genotype-phenotype discordance often observed in family members carrying Na+-channel pathogenic variants.
    METHODS: Patch-clamp and immunocytochemistry analysis were used to investigate biophysical properties and cellular localization in HEK293 cells and rat neonatal cardiomyocytes transfected respectively with WT and 3 mutant channels chosen for their particular trafficking and/or gating properties.
    RESULTS: As previously reported, the mutant channels G1743R and R878C expressed alone in HEK293 cells both abolished INa, G1743R through a trafficking deficiency and R878C through a gating deficiency. Here, we showed that coexpression of both G1743R and R878C nonfunctioning channels resulted in a partial rescue of INa, demonstrating a cooperative trafficking of Nav1.5 α-subunits. Surprisingly, we also showed a cooperation mechanism whereby the R878C gating-deficient channel was able to rescue the slowed inactivation kinetics of the C-terminal truncated R1860X (ΔCter) variant, suggesting coupled gating.
    CONCLUSIONS: Altogether, our results add to the evidence that Nav channels are able to interact and regulate each other\'s trafficking and gating, a feature that likely contributes to explain the genotype-phenotype discordance often observed between members of a kindred carrying a Na+-channel pathogenic variant.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    正在进行的COVID-19大流行是由严重急性呼吸道综合症冠状病毒2(SARS-CoV-2)引起的。由于该病毒被归类为生物安全3级(BSL-3)因子,对策和基本研究方法的发展在逻辑上是困难的。最近,利用反向遗传学,我们开发了一种BSL-2细胞培养系统,用于通过遗传互补产生转录和复制组分病毒样颗粒(trVLP)。该系统由两部分组成:SARS-CoV-2GFP/ΔN基因组RNA,其中核衣壳(N)基因,病毒粒子包装的关键基因,被GFP报告基因取代;和用于N(Caco-2-N)异位表达的包装细胞系。完整的病毒生命周期可以概括和局限于Caco-2-N细胞,GFP阳性作为病毒感染的替代读数。此外,我们利用内含肽介导的蛋白质剪接技术将N基因分裂成两个独立的载体,并产生Caco-2-Nintein细胞作为包装细胞系,以进一步提高这种细胞培养模型的安全性。总之,该系统提供了一种在BSL-2实验室生产trVLP的安全和方便的方法。这些trVLP可以被修饰以掺入所需的突变,允许抗病毒化合物的高通量筛选和中和抗体的评估。该协议描述了trVLP细胞培养模型的细节,以使SARS-CoV-2研究更容易获得。
    The ongoing COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As this virus is classified as a biosafety level-3 (BSL-3) agent, the development of countermeasures and basic research methods is logistically difficult. Recently, using reverse genetics, we developed a BSL-2 cell culture system for production of transcription- and replication-component virus-like-particles (trVLPs) by genetic transcomplementation. The system consists of two parts: SARS-CoV-2 GFP/ΔN genomic RNA, in which the nucleocapsid (N) gene, a critical gene for virion packaging, is replaced by a GFP reporter gene; and a packaging cell line for ectopic expression of N (Caco-2-N). The complete viral life cycle can be recapitulated and confined to Caco-2-N cells, with GFP positivity serving as a surrogate readout for viral infection. In addition, we utilized an intein-mediated protein splicing technique to split the N gene into two independent vectors and generated the Caco-2-Nintein cells as a packaging cell line to further enhance the security of this cell culture model. Altogether, this system provides for a safe and convenient method to produce trVLPs in BSL-2 laboratories. These trVLPs can be modified to incorporate desired mutations, permitting high-throughput screening of antiviral compounds and evaluation of neutralizing antibodies. This protocol describes the details of the trVLP cell culture model to make SARS-CoV-2 research more readily accessible.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    小麦矮小病毒,由叶蝇Psammotettixieranus持续传播,非传播方式,感染禾本科科的许多物种。与小麦矮化病毒(WDV)相关的数据表明,某些分离株优先感染小麦,而其他分离株优先感染大麦。这允许定义小麦菌株和大麦菌株。文献中关于这两种菌株中的每一种感染其非优选宿主的能力存在矛盾的结果。为了提高对WDV菌株与大麦和小麦之间相互作用的认识,使用条形码化的P.alienus和基于WDV品系的单一/顺序获取以及向小麦和大麦的传播的实验设计进行了传播实验。结果表明,(I)WDV毒株以相似的效率通过雄性异形假单胞菌传播,雌性和幼虫,(II)WDV小麦和大麦菌株不感染大麦和小麦植物,分别,和(III)小麦和大麦菌株之间的功能性互补允许大麦和小麦的混合感染。必须考虑所描述的每种WDV毒株在另一种病毒毒株存在下感染非宿主植物的能力,以分析关于WDV宿主范围的可用数据。
    Wheat dwarf virus, transmitted by the leafhopper Psammotettix alienus in a persistent, non-propagative manner, infects numerous species from the Poaceae family. Data associated with wheat dwarf virus (WDV) suggest that some isolates preferentially infect wheat while other preferentially infect barley. This allowed to define the wheat strain and the barley strain. There are contradictory results in the literature regarding the ability of each of these two strains to infect its non-preferred host. To improve knowledge on the interactions between WDV strains and barley and wheat, transmission experiments were carried out using barcoded P. alienus and an experimental design based on single/sequential acquisitions of WDV strains and on transmissions to wheat and barley. Results showed that (I) WDV strains are transmitted with similar efficiencies by P. alienus males, females and larvae, (II) WDV wheat and barley strains do not infect barley and wheat plants, respectively, and (III) a functional transcomplementation between the wheat and barley strains allows a mixed infection of barley and wheat. The described ability of each WDV strain to infect a non-host plant in the presence of the other viral strain must be considered to analyze data available on WDV host range.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:由于腺相关病毒的体积较小,AAV,囊性纤维化电导调节因子,CFTR,cDNA太大以至于不能容纳在AAV中并且必须被截短。我们在这里报告CFTR的两个截断版本,which,当插入AAV1并用于感染气道细胞时,通过反式互补拯救F508-delCFTR。这项研究的目的是阐明细胞中发生反式互补的位置以及它如何导致内源性F508-del和截短的CFTR之间的紧密联系。
    方法:我们用含有CFTR截短形式的AAV2/1(AAV2反向末端重复序列/AAV1衣壳)处理CF气道细胞(CFBE41o-),Δ264和Δ27-264CFTR,谁可以通过反式互补恢复F508-del的功能。我们使用共聚焦显微镜和短路电流测量的组合来解决研究的目的。对于后者,CF支气管上皮细胞(CFBE)在可渗透的支持物上生长。
    结果:我们显示F508del和截短突变体共同定位在ER中,并且获救的F508-del和反式互补突变体一起到达质膜。F508-del和内质网(ER)内的反式互补突变体之间存在显著的荧光共振能量转移(FRET),表明反式互补是通过双分子相互作用发生的。我们发现,在稳定表达额外wt-CFTR或F508-del的CFBE41o细胞中和在表达内源水平的F508-del的亲本CFBE41o细胞中,反式互补可以增加Isc。
    结论:我们得出结论,通过反式互补作用对F508-del的功能性拯救是通过双分子相互作用发生的,该相互作用很可能始于ER并在质膜上继续。这些结果是在开发CF基因疗法的适当时机出现的,并为广泛的CF患者提供了新的治疗选择。
    OBJECTIVE: Because of the small size of adeno-associated virus, AAV, the cystic fibrosis conductance regulator, CFTR, cDNA is too large to fit within AAV and must be truncated. We report here on two truncated versions of CFTR, which, when inserted into AAV1 and used to infect airway cells, rescue F508-del CFTR via transcomplementation. The purpose of this study is to shed light on where in the cell transcomplementation occurs and how it results in close association between the endogenous F508-del and truncated CFTR.
    METHODS: We treated CF airway cells (CFBE41o-) with AAV2/1 (AAV2 inverted terminal repeats/AAV1 capsid) containing truncated forms of CFTR, ∆264 and ∆27-264 CFTR, who can restore the function of F508-del by transcomplementation. We addressed the aims of the study using a combination of confocal microscopy and short circuit currents measurements. For the latter, CF bronchial epithelial cells (CFBE) were grown on permeable supports.
    RESULTS: We show that both F508del and the truncation mutants colocalize in the ER and that both the rescued F508-del and the transcomplementing mutants reach the plasma membrane together. There was significant fluorescence resonance energy transfer (FRET) between F508-del and the transcomplementing mutants within the endoplasmic reticulum (ER), suggesting that transcomplementation occurs through a bimolecular interaction. We found that transcomplementation could increase the Isc in CFBE41o- cells stably expressing additional wt-CFTR or F508-del and in parental CFBE41o- cells expressing endogenous levels of F508-del.
    CONCLUSIONS: We conclude that the functional rescue of F508-del by transcomplementation occurs via a bimolecular interaction that most likely begins in the ER and continues at the plasma membrane. These results come at an opportune time for developing a gene therapy for CF and offer new treatment options for a wide range of CF patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    宏基因组调查和来自下一代测序的数据表明,植物病毒之间的混合感染可能是自然病理系统中的规则而不是例外。记录在案的病例可能从协同作用到拮抗作用,这可能取决于病毒到达宿主和宿主本身的时空顺序。在协同互动中,复制中可测量的差异,表型和细胞病理学变化,细胞向性,在主机运动中,两种病毒之一或两者的传播率增加。相反,复制的减少,或一种病毒对另一种病毒抑制上述一种或多种功能,导致一种拮抗的相互作用。病毒可以直接和通过有缺陷的功能的反式互补或间接地相互作用,通过宿主介导的反应,如基于RNA沉默的防御机制。这些相互作用的结果可以应用于表达病毒蛋白的转基因作物的风险评估,或交叉保护作物,以识别潜在危害。在实验证据之前,数学模型可能有助于预测来自协同和拮抗相互作用的各种途径的挑战。事实上,在农业框架内,这种预测似乎没有得到足够的信用。
    Metagenomic surveys and data from next generation sequencing revealed that mixed infections among plant viruses are probably a rule rather than an exception in natural pathosystems. The documented cases may range from synergism to antagonism, which may depend from the spatiotemporal order of arrival of the viruses on the host and upon the host itself. In synergistic interactions, the measurable differences in replication, phenotypic and cytopathological changes, cellular tropism, within host movement, and transmission rate of one of the two viruses or both are increased. Conversely, a decrease in replication, or inhibition of one or more of the above functions by one virus against the other, leads to an antagonistic interaction. Viruses may interact directly and by transcomplementation of defective functions or indirectly, through responses mediated by the host like the defense mechanism based on RNA silencing. Outcomes of these interactions can be applied to the risk assessment of transgenic crops expressing viral proteins, or cross-protected crops for the identification of potential hazards. Prior to experimental evidence, mathematical models may help in forecasting challenges deriving from the great variety of pathways of synergistic and antagonistic interactions. Actually, it seems that such predictions do not receive sufficient credit in the framework of agriculture.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号