totipotent blastomere-like cells

  • 文章类型: Journal Article
    受精卵的分裂产生全能卵裂球。在人类8细胞卵裂球中,发生合子基因组激活(ZGA)以启动个体发育程序。然而,在人体细胞中捕获和维持全能性构成了重大挑战。这里,我们实现了培养人类全能卵裂球样细胞(hTBLC)。我们发现剪接抑制可以将人类多能干细胞瞬时重编程为ZGA样细胞(ZLCs),其随后在长期传代后转变为稳定的hTBLC。与报道的8细胞样细胞(8CLC)不同,ZLC和hTBLC都广泛沉默多能基因。有趣的是,ZLCs激活一组特定的ZGA特异性基因,和hTBLC富含前ZGA特异性基因。在自发分化过程中,hTBLC重新进入中间ZLC阶段,并进一步产生外爆炸(EPI)-,原始内胚层(PrE)-,和类似滋养外胚层(TE)的谱系,有效地概括了人类植入前的发育。具有胚胎和胚胎外发育能力,hTBLC可以在体外自主产生胚泡样结构而没有外部细胞信号传导。总之,我们的研究提供了人类细胞全能性的关键标准和见解.
    The cleavage of zygotes generates totipotent blastomeres. In human 8-cell blastomeres, zygotic genome activation (ZGA) occurs to initiate the ontogenesis program. However, capturing and maintaining totipotency in human cells pose significant challenges. Here, we realize culturing human totipotent blastomere-like cells (hTBLCs). We find that splicing inhibition can transiently reprogram human pluripotent stem cells into ZGA-like cells (ZLCs), which subsequently transition into stable hTBLCs after long-term passaging. Distinct from reported 8-cell-like cells (8CLCs), both ZLCs and hTBLCs widely silence pluripotent genes. Interestingly, ZLCs activate a particular group of ZGA-specific genes, and hTBLCs are enriched with pre-ZGA-specific genes. During spontaneous differentiation, hTBLCs re-enter the intermediate ZLC stage and further generate epiblast (EPI)-, primitive endoderm (PrE)-, and trophectoderm (TE)-like lineages, effectively recapitulating human pre-implantation development. Possessing both embryonic and extraembryonic developmental potency, hTBLCs can autonomously generate blastocyst-like structures in vitro without external cell signaling. In summary, our study provides key criteria and insights into human cell totipotency.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    全能干细胞(TSC),可以发育成完整的有机体,用于再生医学等生物领域,哺乳动物育种,和保护。然而,从早期胚胎培养的细胞很难保持发育全能性和自我更新能力,成为制约TSCs研究的关键因素。幸运的是,诱导多能干细胞恢复全能性的研究取得了突破,导致多个TSCs的建立,并引发了干细胞研究的新浪潮。此外,胚泡样结构可以通过建立的TSC产生,这为体外合成胚胎奠定了基础。在这次审查中,我们总结了早期胚胎的全能性阶段,TSCs的建立和培养,以及对TSCs发育能力的探索,促进TSCs的深入研究。
    Totipotent stem cells (TSCs), can develop into complete organisms, are used in biological fields such as regenerative medicine, mammalian breeding, and conservation. However, it is difficult to maintain the developmental totipotency and self-renewal capacity of cells cultured from early-stage embryos, which becomes a key factor limiting the research of TSCs. Fortunately, a breakthrough in the study of induced pluripotent stem cells returning to their totipotent state has been made, resulting in the establishment of multiple TSCs and igniting a new wave of stem cell research. Furthermore, the blastocyst-like structures can be generated by the established TSCs, which lays a foundation for synthetic embryos in vitro. In this review, we summarize the totipotent stage of early embryos, the establishment and cultivation of TSCs, and the developmental ability exploration of TSCs to promote further research of TSCs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    全能干细胞在体内细胞中短暂出现,可以形成胚胎的所有细胞类型,包括胎盘,他们的体外同行正在积极追求。随后,建立了具有可变稳健性和生物学相关性的全能样细胞。这里,我们总结了目前在培养中捕获这些细胞的进展。
    Totipotent stem cells are transiently occurring in vivo cells that can form all cell types of the embryo including placenta, with their in vitro counterparts being actively pursued. Subsequently, totipotent-like cells are established with variable robustness and biological relevance. Here, we summarize current progress on capturing these cells in culture.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The developmental potential within pluripotent cells in the canonical model is restricted to embryonic tissues, whereas totipotent cells can differentiate into both embryonic and extraembryonic tissues. Currently, the ability to culture in vitro totipotent cells possessing molecular and functional features like those of an early embryo in vivo has been a challenge. Recently, it was reported that treatment with a single spliceosome inhibitor, pladienolide B (plaB), can successfully reprogram mouse pluripotent stem cells into totipotent blastomere-like cells (TBLCs) in vitro. The TBLCs exhibited totipotency transcriptionally and acquired expanded developmental potential with the ability to yield various embryonic and extraembryonic tissues that may be employed as novel mouse developmental cell models. However, it is disputed whether TBLCs are \'true\' totipotent stem cells equivalent to in vivo two-cell stage embryos. To address this question, single-cell RNA sequencing was applied to TBLCs and cells from early mouse embryonic developmental stages and the data were integrated using canonical correlation analyses. Differential expression analyses were performed between TBLCs and multi-embryonic cell stages to identify differentially expressed genes. Remarkably, a subpopulation within the TBLCs population expressed a high level of the totipotent-related genes Zscan4s and displayed transcriptomic features similar to mouse two-cell stage embryonic cells. This study underscores the subtle differences between in vitro derived TBLCs and in vivo mouse early developmental cell stages at the single-cell transcriptomic level. Our study has identified a new experimental model for stem cell biology, namely \'cluster 3\', as a subpopulation of TBLCs that can be molecularly defined as near totipotent cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号