thermal vibration

  • 文章类型: Journal Article
    在这项研究中,使用波长为1064nm,脉冲宽度为100ns的脉冲激光从2024铝合金表面去除油漆。通过实验研究,分析了激光参数对飞机蒙皮表面漆层去除效果的影响,以及激光处理后铝合金基体显微组织的演变过程。通过模拟探索了激光清洗的机理。结果表明,功率密度和扫描速度显着影响清洁质量。值得注意的是,重复频率有明显的损伤阈值和最佳清洁参数,功率密度为178.25MW/cm2,扫描速度为500mm/s,40kHz的重复频率被确定为实现所需清洁效果的主要最佳设置。热烧蚀和热振动被确定为清洁的主要机制。此外,激光加工引起的表面位错和集中应力,伴随着晶粒细化,在铝基板上。
    In this study, a pulsed laser operating at a wavelength of 1064 nm and with a pulse width of 100 ns was utilized for the removal of paint from the surface of a 2024 aluminum alloy. The experimental investigation was conducted to analyze the influence of laser parameters on the efficacy of paint layer removal from the aircraft skin\'s surface and the subsequent evolution in the microstructure of the laser-treated aluminum alloy substrate. The mechanism underlying laser cleaning was explored through simulation. The findings revealed that power density and scanning speed significantly affected the quality of cleaning. Notably, there were discernible damage thresholds and optimal cleaning parameters in repetitive frequency, with a power density of 178.25 MW/cm2, scanning speed of 500 mm/s, and repetitive frequency of 40 kHz identified as the primary optimal settings for achieving the desired cleaning effect. Thermal ablation and thermal vibration were identified as the principal mechanisms of cleaning. Moreover, laser processing induced surface dislocations and concentrated stress, accompanied by grain refinement, on the aluminum substrate.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    研究了动态热振动下厚功能梯度材料(FGM)锥形壳位移的时变三阶剪切变形理论(TSDT)方法。厚FGM锥形壳的TSDT运动动力学方程直接应用于曲线坐标中变量R*θ的偏导数(x,θ,z)而不是直角坐标中的y(x,y,z)对于厚FGM板,其中R*是圆锥壳上任意点的中间曲面半径。采用广义微分正交(GDQ)数值方法求解热载荷下平衡矩阵形式的动态微分方程。识别剪切校正系数的参数效应是当前研究的新颖性,环境温度,TSDT型号,和FGM幂律指数关于仅承受正弦热载荷的厚锥形壳中的位移和应力。长度与厚度比的值等于5的物理零件,并且当考虑和影响热应力时,可以在通常接近1000K以上温度的飞机发动机区域中使用10FGM。本研究的重要发现如下。在TSDT中系数c1等于0.925925/mm2且长度与厚度之比等于5的情况下,法向应力值随时间呈下降趋势。在x平面z方向上,次要中间表面半径(r)上的剪切应力值等于8上的主要中间表面半径(R),长度与厚度之比等于5,可以承受T=1000K的压力。
    A time-dependent third-order shear deformation theory (TSDT) approach on the displacements of thick functionally graded material (FGM) conical shells under dynamic thermal vibration is studied. Dynamic equations of motion with TSDT for thick FGM conical shells are applied directly with the partial derivative of variable R*θ in the curve coordinates (x, θ, z) instead of y in the Cartesian coordinates (x, y, z) for thick FGM plates, where R* is the middle-surface radius at any point on conical shells. The generalized differential quadrature (GDQ) numerical method is used to solve the dynamic differential equations in equilibrium matrix forms under thermal loads. It is the novelty of the current study to identify the parametric effects of shear correction coefficient, environment temperature, TSDT model, and FGM power law index on the displacements and stresses in the thick conical shells only subjected to sinusoidal heating loads. The physical parts with values on the length-to-thickness ratio equals 5, and 10 FGMs can be used in an area of an airplane engine that usually operates near more than 1000 K of temperatures when the thermal stress is considered and affected. The important findings of the presented study are listed as follows. The values of normal stress are in decreasing tendencies with time in cases when the coefficient c1 equals 0.925925/mm2 in TSDT and length-to-thickness ratio equals 5. The shear stress values in x plane z direction on the minor middle-surface radius (r) equals the major middle-surface radius (R) over 8 and length-to-thickness ratio equals to 5 can withstand T = 1000 K of pressure.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    纳米级物体的热振动特性对于它们在诸如纳米机械谐振器之类的设备中的应用至关重要。已开发出一种成像方法,该方法可以在室温下直接可视化高阶热振动模式,到目前为止,由于它们的亚波段振幅和更强的重叠第一模式,它们无法观测到。这项技术,将像差校正扫描透射电子显微镜与宽带时域信号采集相结合,可以通过选择特定的频率窗口同时显示几种热振动模式的振幅分布。通过映射单夹持纳米线的前六个热振动模式并将它们与通过有限元计算获得的自然振动模式轮廓进行比较来展示这一点。这种实现方式进一步加深了我们对纳米结构的集体布朗运动的理解,并扩展了电子显微镜的分析能力。
    Thermal vibration properties of nanometer-scale objects are critical for their application in devices such as nanomechanical resonators. An imaging method has been developed which allows the direct visualization of higher-order thermal vibration modes at room temperature, which have so far been inaccessible to observation due to their subangstrom amplitudes and the much stronger overlapped first mode. This technique, combining aberration-corrected scanning transmission electron microscopy with broad-band signal acquisition in the time domain, can display the amplitude distribution of several thermal vibration modes simultaneously by selecting specific frequency windows. This is showcased by mapping the first six thermal vibration modes of a singly clamped nanowire and comparing them to natural vibration mode profiles obtained by finite element calculations. This implementation furthers our understanding of the collective Brownian motion of nanostructures and extends the analysis capabilities of electron microscopy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    By bending a straight carbon nanotube and bonding both ends of the nanotube, a nanoring (or nano-wheel) is produced. The nanoring system can be driven to rotate by fixed outer nanotubes at room temperature. When placing some atoms at the edge of each outer tube (the stator here) with inwardly radial deviation (IRD), the IRD atoms will repulse the nanoring in their thermally vibration-induced collision and drive the nanoring to rotate when the repulsion due to IRD and the friction with stators induce a non-zero moment about the axis of rotational symmetry of the ring. As such, the nanoring can act as a wheel in a nanovehicle. When the repulsion is balanced with the intertubular friction, a stable rotational frequency (SRF) of the rotor is achieved. The results from the molecular dynamics simulation demonstrate that the nanowheel can work at extremely low temperature and its rotational speed can be adjusted by tuning temperature.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Single crystals of the title compound, the post-perovskite-type CaIrO3 [calcium iridium(IV) trioxide], have been grown from a CaCl2 flux at atmospheric pressure. The crystal structure consists of an alternate stacking of IrO6 octa-hedral layers and CaO8 hendeca-hedral layers along [010]. Chains formed by edge-sharing of IrO6 octa-hedra (point-group symmetry 2/m..) run along [100] and are inter-connected along [001] by sharing apical O atoms to build up the IrO6 octa-hedral layers. Chains formed by face-sharing of CaO8 hendeca-hedra (point-group symmetry m2m) run along [100] and are inter-connected along [001] by edge-sharing to build up the CaO8 hendeca-hedral layers. The IrO6 octa-hedral layers and CaO8 hendeca-hedral layers are inter-connected by sharing edges. The present structure refinement using a high-power X-ray source confirms the atomic positions determined by Hirai et al. (2009 ▸) [Z. Kristallogr. 224, 345-350], who had revised our previous report [Sugahara et al. (2008 ▸). Am. Mineral. 93, 1148-1152]. However, the displacement ellipsoids of the Ir and Ca atoms based on the present refinement can be approximated as uniaxial ellipsoids elongating along [100], unlike those reported by Hirai et al. (2009 ▸). This suggests that the thermal vibrations of the Ir and Ca atoms are mutually suppressed towards the Ir⋯Ca direction across the shared edge because of the dominant repulsion between the two atoms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号