thermal management

热管理
  • 文章类型: Journal Article
    相变光纤(PCFs),结合不同的相变材料(PCM),如石蜡(PW),已被公认为是制造智能温度调节纺织品的有效策略之一。然而,传统的石蜡纤维素基PCFs存在一些致命的缺陷,包括石蜡泄漏和低纤维强度。在这项工作中,我们在此提出了一种简单的方法来制备由纤维素纳米原纤维(CNFs)稳定的均匀和稳定的石蜡乳液,然后进行简单的同轴湿法纺丝,以开发用于人体体温管理的智能和强大的基于纤维素的PCFs。受益于CNF增强封装,确实促进了石蜡胶囊的稳定性以及纤维素与石蜡的相容性,从而使纤维素基PCF具有优异的机械强度,防泄漏,和热调节。因此,准备好的PCF,即CNF1-PE/PW,最佳CNF1加载量为1wt%,在111.2%的应变下具有10.95MPa的高拉伸应力,相变焓值为140.24J/g,石蜡泄漏率为0.9%。此外,即使在50个循环后,相应的可穿戴织物也表现出优异的热存储和释放可回收性。因此,本研究为智能纤维素基相变纤维材料的开发提供了新的思路。
    Phase change fibers (PCFs), incorporating with diverse phase change materials (PCMs) such as paraffin wax (PW), have been recognized as one of the effective strategies for fabricate smart thermoregulatory textiles. However, some fatal defects exist in traditional paraffin-cellulose-based PCFs, including the paraffin leakage and the low fiber strength. In this work, we herein propose a facile method to prepare uniform and stable paraffin emulsions stabilized by cellulose nanofibrils (CNFs), followed by a simple coaxial wet spinning to develop smart and robust cellulose-based PCFs for human body temperature management. Benefiting from the CNF-reinforced encapsulation, the stability of paraffin capsules and the compatibility of cellulose and paraffin are indeed promoted, thus allowing the cellulose-based PCF with excellent mechanical strength, leakage prevention, and thermal regulation. As a result, the as-prepared PCF, namely CNF1-PE/PW with optimal 1 wt% CNF1 loading, features a high tensile stress of 10.95 MPa at a strain of 111.2 % and a phase-change enthalpy value of 140.24 J/g with a slight paraffin leakage rate of 0.9 %. Moreover, the corresponding wearable fabric exhibits an excellent thermal storage and release recyclability even after 50 cycles. Therefore, this study provides a new idea for the development of intelligent cellulose-based phase change fiber materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在为人类社会提供电能的同时,电力设备也消耗电力和产生热量。冷却设备消耗大量电力,进一步增加电网的能耗和负荷。因此,迫切需要为电力设备开发低能耗和可持续的冷却技术。在这项研究中,介绍了一种混合被动冷却复合材料,旨在增强重载电力设备的散热性能。具体来说,该复合材料具有出色的辐射冷却性能,平均太阳能反射率高达0.98,而其出色的大气集水性能确保了高蒸发冷却能力,而无需手动补水。因此,复合材料有效地降低了室外重载电力设备的温度(例如,变压器)由25.3°C。复合材料的优异散热性能使其成为保护电气系统的有力工具。
    While providing electrical energy for human society, power equipment also consumes electricity and generate heat. Cooling equipment consumes a significant amount of electricity, further increasing energy consumption and load on the power grid. Therefore, there is an urgent need to develop low-energy and sustainable cooling technologies for power equipment. In this study, a hybrid passive cooling composite designed to enhance heat dissipation for heavy-load power equipment is introduced. Specifically, the composite material achieves outstanding radiative cooling performance with an average solar reflectance of up to 0.98, while its excellent atmospheric water harvesting performance ensures high evaporation cooling power without the need for manual water replenishment. As a result, the composite effectively lowers the temperature of outdoor heavy-load power equipment (e.g., transformers) by 25.3 °C. The excellent heat dissipation properties of the composite make it a powerful tool in safeguarding electrical systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本研究对磁流变(MR)圆锥轴承的3D仿真进行了全面研究,重点考虑使用共轭传热方法的粘性耗散。MR流体的行为是通过利用Bingham-Papanastasiou本构方程来表示的。值得注意的是,这项研究认为粘度和屈服应力的变化是磁场强度和温度的函数。这项研究采用了多学科的方法,包括流体动力学,磁性,和热传递,对圆锥轴承几何形状内MR流体的行为进行建模和分析。包含柯西动量的控制方程,能源,和麦克斯韦方程组用有限元方法求解。本研究深入研究了粘性耗散对圆锥轴承功能和特性属性的影响。专门解决了固体和流体域中的能量方程以及对粘性耗散内的塞区的扩展考虑。通过涉及实验的比较分析进行了广泛的验证,数值,和分析研究,以确保结果的有效性。结果表明,温度对磁流变圆锥轴承的特性和功能都有重大影响。
    This study presents a comprehensive investigation into a 3D simulation of magnetorheological (MR) conical bearings, focusing on considering viscous dissipation using the conjugated heat transfer approach. The behavior of MR fluids is expressed through the utilization of the Bingham-Papanastasiou constitutive equation. Notably, this study considers variations in viscosity and yield stress as functions of both magnetic field intensity and temperature. The study utilizes a multidisciplinary approach, encompassing fluid dynamics, magnetism, and heat transfer, to model and analyze the behavior of MR fluids within conical bearing geometries. The governing equations containing Cauchy momentum, energy, and Maxwell equations are solved using the finite element method. This research delves into the impacts of viscous dissipation on the functional and characteristic attributes of conical bearings. The energy equations in solid and fluid domains and extended considerations to the plug region within viscous dissipation are specifically addressed. Extensive validation is performed through a comparative analysis involving experimental, numerical, and analytical studies to ensure the validity of results. The results reveal the substantial impact of temperature on both the characteristics and functionality of magnetorheological conical bearings.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    红外发射率的操纵,这与材料的表面结构和光学参数密切相关,是实现动态热管理的重要方法。在这项研究中,我们设计了一种超材料,该材料由嵌入在可拉伸弹性体基材表面上的铝盘阵列组成。机械拉伸引起的变形允许动态修改表面结构和等效光学参数,从而实现发射率的动态控制。以聚二甲基硅氧烷(PDMS)弹性体为基材,微观结构的盘间间隙可以通过拉伸PDMS来改变。通过理论计算,这种方法的合理性由等离子体共振的激发和高吸收性PDMS的暴露区域的变化来解释。结果表明,调整红外发射率的最佳结构为直径6μm,高度100nm。基于此设计,我们制备了周期为7和7.9μm的样品,并通过实验证明了周期的变化会导致发射率的变化,从而导致热控性能的可调性。对于两个样品,在0.28W/cm2的加热功率下,两个样品之间的温度差达到44.1°C。此外,我们构建了一个拉伸平台,使原位机械拉伸实现发射率的动态变化。在13%的双轴拉伸应变下,样品的积分红外发射率从0.32增加到0.5,达到56%的整体红外发射率的调制率。该材料有望实现动态热管理。
    Manipulation of infrared emissivity, which is closely related to surface structure and optical parameters of materials, is a crucial approach for realizing dynamic thermal management. In this study, we design a metamaterial consisting of an array of aluminum disks embedded on a surface of a stretchable elastomeric substrate. Mechanical stretching-induced deformation allows dynamic modification of the surface structure and equivalent optical parameters, thus enabling dynamic control of the emissivity. By utilizing the elastomer polydimethylsiloxane (PDMS) as the substrate, the microstructure interdisk gap can be altered by stretching the PDMS. Through theoretical calculations, the plausibility of this approach is explained by the excitation of plasmon resonance and the variation in the exposed area of highly absorbent PDMS, and the optimal structures for tuning the infrared emissivity are revealed to be 6 μm in diameter and 100 nm in height. Based on this design, we prepare samples with periods of 7 and 7.9 μm and experimentally demonstrate that a change in the period can cause a change in the emissivity and thus tunability in thermal control performance. The temperature difference between the two samples reaches 44.1 °C at a heating power of 0.28 W/cm2 for both samples. Furthermore, we construct a stretching platform that enables in situ mechanical stretching to realize dynamic changes in emissivity. The integral infrared emissivity of the sample increases from 0.32 to 0.5 at a biaxial tensile strain of 13%, achieving a 56% modulation rate of the integral infrared emissivity. The material is expected to enable dynamic thermal management.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    这项研究介绍了能够可逆改变其热致透射率的新型热致变色材料的合成和详细表征。通过乳液聚合工艺,这种新开发的材料由75-85%的丙烯酸十八酯和0-7%的甲基丙烯酸烯丙酯组成,在24.5-39°C的狭窄而临界温度范围内表现出明显的变色效应。合成的粉末经过一系列测试,包括差示扫描量热法和热重分析,以及扫描电子显微镜。这些综合评估证实了材料的特殊热稳定性,均匀的粒度分布,和强大的锚固性能。在这些发现的基础上,我们推进了热致变色聚乙烯醇缩丁醛薄膜和夹层玻璃产品的开发。通过利用共挤出技术,我们将这些薄膜整合到夹层玻璃中,为现有的玻璃技术设定新的基准。值得注意的是,将热致变色PVB薄膜掺入夹层玻璃中导致太阳辐照度显着降低20-30%,优于传统的双银低辐射玻璃。这一成就证明了该材料具有出色的遮阳和隔热性能。本文提出的研究不仅开创了具有可调热致透射率的智能材料工程的有价值的方法,而且还掌握了在一系列应用中解锁增强能源效率的关键。这种创新对可持续建筑材料领域的潜在影响是深远的,有望在节能和环境管理方面取得重大进展。
    This study introduces the synthesis and detailed characterization of a novel thermochromic material capable of reversible alterations in its thermotropic transmittance. Through an emulsion polymerization process, this newly developed material is composed of 75-85% octadecyl acrylate and 0-7% allyl methacrylate, demonstrating a pronounced discoloration effect across a narrow yet critical temperature range of 24.5-39 °C. The synthesized powder underwent a battery of tests, including differential scanning calorimetry and thermogravimetric analysis, as well as scanning electron microscopy. These comprehensive evaluations confirmed the material\'s exceptional thermal stability, uniform particle size distribution, and strong anchoring properties. Building upon these findings, we advanced the development of thermochromic polyvinyl butyral films and laminated glass products. By utilizing a coextrusion technique, we integrated these films into laminated glass, setting a new benchmark against existing glass technologies. Remarkably, the incorporation of thermochromic PVB films into laminated glass led to a significant reduction in solar irradiance of 20-30%, outperforming traditional double silver low-emissivity glass. This achievement demonstrates the exceptional shading and thermal insulation properties of the material. The research presented herein not only pioneers a valuable methodology for the engineering of smart materials with tunable thermotropic transmittance but also holds the key to unlocking enhanced energy efficiency across a spectrum of applications. The potential impact of this innovation on the realm of sustainable building materials is profound, promising significant strides toward energy conservation and environmental stewardship.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    光与物质之间相互作用的操纵在生物体的进化和人类更好的生活中起着至关重要的作用。作为自然选择的结果,精确的生物光调节系统已经被设计,提供了许多强大的和有前途的生物启发策略。作为“伪装之王”,头足类动物,它可以完美地控制光的传播,从而通过其精致的皮肤结构实现出色的环境匹配,使自己成为开发光学和热调节纳米材料的令人兴奋的灵感来源。这篇综述介绍了受头足类启发的光学和热调节纳米材料的前沿进展,突出迄今为止取得的关键里程碑和突破。我们从头足类动物的适应性变色能力的潜在机制开始,以及他们特殊的分层皮肤结构。然后,全面总结了不同类型的生物启发纳米材料和器件。此外,这些纳米材料和器件的一些先进和新兴应用,包括伪装,热管理,像素化,医疗卫生,传感和无线通信,已解决。最后,讨论了一些剩余但重大的挑战和未来工作的潜在方向。我们预计,这项全面的审查将促进进一步发展头足类的纳米材料,用于光学和热调节,并引发多学科应用中纳米材料的生物启发设计的想法。
    The manipulation of interactions between light and matter plays a crucial role in the evolution of organisms and a better life for humans. As a result of natural selection, precise light-regulatory systems of biology have been engineered that provide many powerful and promising bioinspired strategies. As the \"king of disguise\", cephalopods, which can perfectly control the propagation of light and thus achieve excellent surrounding-matching via their delicate skin structure, have made themselves an exciting source of inspiration for developing optical and thermal regulation nanomaterials. This review presents cutting-edge advancements in cephalopod-inspired optical and thermal regulation nanomaterials, highlighting the key milestones and breakthroughs achieved thus far. We begin with the underlying mechanisms of the adaptive color-changing ability of cephalopods, as well as their special hierarchical skin structure. Then, different types of bioinspired nanomaterials and devices are comprehensively summarized. Furthermore, some advanced and emerging applications of these nanomaterials and devices, including camouflage, thermal management, pixelation, medical health, sensing and wireless communication, are addressed. Finally, some remaining but significant challenges and potential directions for future work are discussed. We anticipate that this comprehensive review will promote the further development of cephalopod-inspired nanomaterials for optical and thermal regulation and trigger ideas for bioinspired design of nanomaterials in multidisciplinary applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电子皮肤(e-skin)的发展,模仿人类皮肤的三个基本功能(感知,保护,和温度调节)在人机界面和智能机器人技术方面具有巨大潜力。然而,现有的研究主要集中在感知上。这项研究提出了一个小说,环保,机械坚固的电子皮肤复制人类皮肤的三个基本功能。电子皮肤由Ti3C2TxMXene组成,聚吡咯,和细菌纤维素纳米纤维,MXene纳米薄片形成基质,细菌纤维素纳米纤维作为填料,聚吡咯作为导电的“交联剂”。这种设计允许定制电导率,微体系结构,和机械性能,集成传感(感知),EMI屏蔽(保护),和热管理(温度调节)。最佳的电子皮肤可以有效地感知各种运动(包括微小的动脉脉冲),在78μm厚度下实现63.32dB的EMI屏蔽效率,并在2.4V下30秒内将温度调节至129°C,展示其在复杂场景中智能机器人的潜力。
    The development of electronic skin (e-skin) emulating the human skin\'s three essential functions (perception, protection, and thermoregulation) has great potential for human-machine interfaces and intelligent robotics. However, existing studies mainly focus on perception. This study presents a novel, eco-friendly, mechanically robust e-skin replicating human skin\'s three essential functions. The e-skin is composed of Ti3C2Tx MXene, polypyrrole, and bacterial cellulose nanofibers, where the MXene nanoflakes form the matrix, the bacterial cellulose nanofibers act as the filler, and the polypyrrole serves as a conductive \"cross-linker\". This design allows customization of the electrical conductivity, microarchitecture, and mechanical properties, integrating sensing (perception), EMI shielding (protection), and thermal management (thermoregulation). The optimal e-skin can effectively sense various motions (including minuscule artery pulses), achieve an EMI shielding efficiency of 63.32 dB at 78 μm thickness, and regulate temperature up to 129 °C in 30 s at 2.4 V, demonstrating its potential for smart robotics in complex scenarios.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    高效和高性能电动汽车(EV)电池的开发依赖于改进各种组件,如阳极和阴极电极,分离器,和电解质。这篇综述论文详细概述了这些组件的不同材料,强调各自对提高电动汽车电池性能的贡献。碳基材料,金属复合材料,并探索了聚合物纳米复合材料作为阳极,提供高能量密度和容量。然而,它们被注意到容易电镀锂。独特的结构,如钛铌氧化物(TiNb2O7),提供高理论能力,快速Li+插层,和延长的生命周期。同时,二硫化钼(MoS2),具有2D和3D结构,表现出高可逆比容量,出色的费率性能,和循环稳定性,作为阳极材料显示出有希望的性能。对于阴极,磷酸铁锂(LFP),锂钴氧化物(LCO),锂-镍-钴-氧化铝(NCA),锂-镍-锰-钴氧化物(NMC),考虑了无钴锂镍锰氧化物(NMO),提供特定的能量和容量优势。例如,LFP阴极电极具有良好的热稳定性,良好的电化学性能,寿命长,虽然NMC表现出很高的比能,相对较高的容量,和成本节约。NCA具有很高的比能量,体面的特定权力,大容量,和长生命周期。NMO表现出优异的倍率能力,循环稳定性,和成本效益,但循环性能有限。分离机创新,包括聚烯烃材料,纳米纤维分离器,基于石墨烯的复合材料,和陶瓷-聚合物复合材料,被分析用作分离器,考虑到机械强度,孔隙度,与电解质的润湿性,电解吸收,循环效率,和离子电导率。电解质包含锂盐,例如四氟硼酸锂(LiBF4),六氟磷酸锂(LiPF6),和溶解在碳酸盐溶剂中的其他盐。这提高了能量密度,容量,和循环稳定性,并提供高离子迁移率和抗分解性。通过考察现有文献,本文还探讨了固体电解质界面(SEI)和锂电镀的研究,为理解和减轻这些关键问题提供有价值的见解。尽管取得了进展,限制,如实际实施挑战,潜在的成本影响,并承认需要进一步研究扩大规模的可行性和长期耐久性。这些增强关键电池参数-正极和负极的电化学特性的努力,分离器,和电解质-旨在提高容量,比能量密度,和整体能量密度。这些持续的努力致力于更快的电动汽车电池充电和更长的行驶范围,为电动汽车储能系统的持续发展做出贡献。因此,这篇综述论文不仅探讨了电动汽车电池技术的显着进步,而且强调了应对挑战和推动未来可持续和高性能电动汽车储能系统研究的必要性。
    The development of efficient and high-performance electric vehicle (EV) batteries relies on improving various components, such as the anode and cathode electrodes, separators, and electrolytes. This review paper offers an elaborate overview of different materials for these components, emphasizing their respective contributions to the improvement of EV battery performance. Carbon-based materials, metal composites, and polymer nanocomposites are explored for the anode, offering high energy density and capacity. However, they are noted to be susceptible to Li plating. Unique structures, such as Titanium niobium oxide (TiNb2O7), offer high theoretical capacity, quick Li+ intercalation, and an extended lifecycle. Meanwhile, molybdenum disulfide (MoS2), with 2D and 3D structures, exhibits high reversible specific capacity, outstanding rate performance, and cyclic stability, showing promising properties as anode material. For cathodes, lithium-iron phosphate (LFP), lithium-cobalt oxide (LCO), lithium-nickel-cobalt-aluminum oxide (NCA), lithium-nickel-manganese-cobalt oxide (NMC), and cobalt-free lithium-nickel-manganese oxide (NMO) are considered, offering specific energy and capacity advantages. For instance, LFP cathode electrodes show good thermal stability, good electrochemical performance, and long lifespan, while NMC exhibits high specific energy, relatively high capacity, and cost savings. NCA has a high specific energy, decent specific power, large capacity, and a long lifecycle. NMO shows excellent rate capability, cyclic stability, and cost-effectiveness but with limited cycle performance. Separator innovations, including polyolefin materials, nanofiber separators, graphene-based composites, and ceramic-polymer composites, are analyzed for use as separators, considering mechanical strength, porosity, wettability with the electrolyte, electrolytic absorption, cycling efficiency, and ionic conductivity. The electrolyte comprises lithium salts such as lithium tetrafluoroborate (LiBF4), lithium hexafluorophosphate (LiPF6), and other salts dissolved in carbonate solvents. This improves energy density, capacity, and cycling stability and provides high ion mobility and resistance to decomposition. By examining the existing literature, this review also explores research on the solid electrolyte interface (SEI) and lithium plating, providing valuable insights into understanding and mitigating these critical issues. Despite the progress, limitations such as practical implementation challenges, potential cost implications, and the need for further research on scale-up feasibility and long-term durability are acknowledged. These efforts to enhance the electrochemical characteristics of key battery parameters-positive and negative electrodes, separators, and electrolytes-aim to improve capacity, specific energy density, and overall energy density. These continuous endeavours strive for faster charging of EV batteries and longer travel ranges, contributing to the ongoing evolution of EV energy storage systems. Thus, this review paper not only explores remarkable strides in EV battery technology but also underscores the imperative of addressing challenges and propelling future research for sustainable and high-performance electric vehicle energy storage systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    相变材料(PCM)对于节能建筑和冷链物流中的可持续热管理至关重要,因为它们可以储存和释放可再生的热能。然而,传统的PCM在高于其相变温度时遭受泄漏和成形性损失,限制其形状的稳定性和多功能性。受肌肉结构的启发,开发了基于聚乙烯醇(PVA)/木材复合材料的具有层次结构和溶剂响应性超分子网络的可成型PCM。材料,处于水合状态,由于对齐的木纤维和PVA分子之间的弱氢键键合,显示出低的刚度和柔韧性。通过将聚乙二醇(PEG)处理成具有增强氢键的PVA/木质PEG凝胶(PEG/PVA/W),在硬质和熔融状态下,所得的木基PCM将拉伸应力从10.14提高到80.86MPa,刚度从420MPa提高到4.8GPa,使其比PEG/PVA对应物硬530倍。能够响应溶剂的变化而变形,这些可成形的PCM实现了复杂的热管理设计。此外,在全面的生命周期评估的支持下,这些形状适应性强的,可回收,和具有较低环境足迹的可生物降解PCM是传统塑料和热管理材料的可持续替代品。
    Phase change materials (PCMs) are crucial for sustainable thermal management in energy-efficient construction and cold chain logistics, as they can store and release renewable thermal energy. However, traditional PCMs suffer from leakage and a loss of formability above their phase change temperatures, limiting their shape stability and versatility. Inspired by the muscle structure, formable PCMs with a hierarchical structure and solvent-responsive supramolecular networks based on polyvinyl alcohol (PVA)/wood composites are developed. The material, in its hydrated state, demonstrates low stiffness and pliability due to the weak hydrogen bonding between aligned wood fibers and PVA molecules. Through treatment of poly(ethylene glycol) (PEG) into the PVA/wood PEG gel (PEG/PVA/W) with strengthened hydrogen bonds, the resulting wood-based PCMs in the hard and melting states elevate the tensile stress from 10.14 to 80.86 MPa and the stiffness from 420 MPa to 4.8 GPa, making it 530 times stiffer than the PEG/PVA counterpart. Capable of morphing in response to solvent changes, these formable PCMs enable intricate designs for thermal management. Furthermore, supported by a comprehensive life cycle assessment, these shape-adaptable, recyclable, and biodegradable PCMs with lower environmental footprint present a sustainable alternative to conventional plastics and thermal management materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    为了解决数据中心中处理器不断增长的功耗以及对环境可持续性的日益重视,从传统的空气冷却到浸入式液体冷却的预期转变需要在基于聚合物的导热材料中进行多种功能集成。这里,从贻贝中汲取灵感,我们展示了一种共聚物,聚(二甲基硅氧烷-共-多巴胺甲基丙烯酸酯)(PDMS-DMA),与各种可逆的分子相互作用,并简单地与液态金属(EGaIn)结合可以产生灵活的,防水,和电绝缘导热复合材料。获得的PDMS-DMA/EGaIn复合材料表现出和谐的属性混合,包括低模量(75.8kPa),6.9Wm-1K-1的高热导率,以及快速的室温自愈能力,能够在20分钟内完成修复,即使在水下。基于其电绝缘和防水性能,PDMS-DMA/EGaIn成为在空气和水下热管理中高效和稳定传热的有前途的候选者。因此,这种防水聚合物基复合材料具有重要的应用在热保护层的未来浸渍液体冷却系统。
    To address the escalating power consumption of processors in data centers and the growing emphasis on environmental sustainability, the prospective shift from traditional air-cooling to immersion liquid cooling necessitates multiple functional integrations in polymer-based thermal conductive materials. Here, drawing inspiration from mussels, we showed a copolymer, poly(dimethylsiloxane-co-dopamine methacrylate) (PDMS-DMA), with a variety of reversible molecular interactions and simply combined with liquid metal (EGaIn) can yield a flexible, waterproof, and electrically insulating thermal conductive composite. The obtained PDMS-DMA/EGaIn composites demonstrate a harmonious blend of attributes, including a low modulus (75.8 kPa), high thermal conductivity of 6.9 W m-1 K-1, and rapid room-temperature self-healing capabilities, capable of complete repair within 20 min, even under water. Based on its electrically insulating and water resistance properties, PDMS-DMA/EGaIn emerges as a promising candidate for efficient and stable heat transfer in both air and underwater thermal management. Consequently, this water-resistant polymer-based composite holds significance for application in thermal protective layers for future immersion liquid cooling systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号