thalamic reticular nucleus

  • 文章类型: Journal Article
    代谢型谷氨酸受体8(mGlu8)是一种异质表达且鲜为人知的谷氨酸受体,具有潜在的药理学意义。丘脑网状核(TRN)是丘脑皮质-皮质丘脑(TC-CT)网络的关键抑制调节剂,在整个大脑的信息处理中起着至关重要的作用。与各种精神疾病有关,并且也是显著的mGlu8表达的位点。使用雄性和雌性小鼠,我们通过荧光原位杂交确定了TRN核心和外壳基质中表达小清蛋白的细胞(通过spp1和ecel1表达鉴定,分别)以及参与皮质丘脑信号传导的皮质层,表达grm8mRNA。然后,我们通过条件(AAV-CRE介导的)和细胞类型特异性组成型缺失策略,分析了TC电路中扰动grm8信号的生理和行为影响。我们表明,组成型小白蛋白grm8敲除(PVgrm8KO)小鼠表现出1)增加的对背侧丘脑中继细胞的自发兴奋性驱动和2)受损的感觉运动门控,通过成对脉冲抑制测量,但是在重复的野外测试中,运动和thigmotaxis没有差异。相反,在重复的开放场测试中,我们观察到了AAV介导的有条件敲除TRN(TRNgrm8KD)中grm8的高机车表型和抗焦虑作用。我们的发现强调了mGlu8在调节兴奋性神经传递以及焦虑相关的运动行为和感觉运动门控中的作用,揭示各种神经精神疾病的潜在治疗应用,并指导未来mGlu8信号传导和TRN功能的研究工作。意义陈述III组mGlu受体和丘脑网状核(TRN)是皮质丘脑相互神经传递的关键调节剂,与焦虑和运动行为有关。本研究表明,TRN和丘脑投射皮质层中grm8mRNA的特异性富集,并表征了mGlu8受体在控制自发兴奋性神经传递到位于背侧丘脑内的细胞上以及调节开放视野和PPI测试的感觉运动行为中的作用。这些发现增加了有关TRN和grm8调节丘脑皮质活动以及与神经和神经精神疾病有关的相关行为的文献。
    Metabotropic glutamate receptor 8 (mGlu8) is a heterogeneously expressed and poorly understood glutamate receptor with potential pharmacological significance. The thalamic reticular nucleus (TRN) is a critical inhibitory modulator of the thalamocortical-corticothalamic (TC-CT) network and plays a crucial role in information processing throughout the brain, is implicated in a variety of psychiatric conditions, and is also a site of significant mGlu8 expression. Using both male and female mice, we determined via fluorescent in situ hybridization that parvalbumin-expressing cells in the TRN core and shell matrices (identified by spp1+ and ecel1+ expression, respectively), as well as the cortical layers involved in CT signaling, express grm8 mRNA. We then assayed the physiological and behavioral impacts of perturbing grm8 signaling in the TC circuit through conditional (adeno-associated virus-CRE mediated) and cell-type-specific constitutive deletion strategies. We show that constitutive parvalbumin grm8 knock-out (PV grm8 knock-out) mice exhibited (1) increased spontaneous excitatory drive onto dorsal thalamus relay cells and (2) impaired sensorimotor gating, measured via paired-pulse inhibition, but observed no differences in locomotion and thigmotaxis in repeated bouts of open field test (OFT). Conversely, we observed hyperlocomotive phenotypes and anxiolytic effects of AAV-mediated conditional knockdown of grm8 in the TRN (TRN grm8 knockdown) in repeated OFT. Our findings underscore a role for mGlu8 in regulating excitatory neurotransmission as well as anxiety-related locomotor behavior and sensorimotor gating, revealing potential therapeutic applications for various neuropsychiatric disorders and guiding future research endeavors into mGlu8 signaling and TRN function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    丘脑网状核(TRN)是丘脑和新皮质之间的重要节点,以状态依赖的方式调节丘脑皮质节律和感觉加工。在包括癫痫在内的几种神经发育障碍中,TRN电路的中断也很突出。自闭症,注意缺陷。了解TRN和1阶丘脑核之间的连接方式和时间,如背外侧膝状核(dLGN),发展是缺乏的。我们使用小鼠视觉丘脑作为模型系统来研究组织,TRN和dLGN之间的神经支配模式和功能反应。遗传修饰的小鼠品系用于可视化和靶向这些丘脑内回路的前馈和反馈成分,并了解来自视网膜的外围输入如何影响其发育。通过TRN逆行追踪丘脑皮质(TC)传入显示,在成人中看到的特定于模态的组织,存在于围产期年龄,似乎不受周围输入的损失的影响。为了检查TRN和dLGN视觉区之间的腔内回路的形成和功能成熟,我们检查了每个原子核的投影何时到达,并使用急性丘脑切片制备以及光遗传学刺激来评估功能性突触反应的成熟。虽然丘脑皮质投射在出生时通过TRN,通过vGluT2标记确定的前馈轴突络脉,出现在产后第二个星期,密度在第三周增加。TRN中TC轴突侧支的光遗传学刺激表现为不频繁,在第1周结束时,兴奋性反应较弱。在第2-4周,反应变得更加普遍,在重复刺激期间,振幅增大并表现出突触抑制。从视觉TRN到dLGN的反馈预测早在出生后第2天就开始支配dLGN,在第1周出现弱抑制反应。在第2-4周,抑制反应持续增长,在重复刺激期间显示突触抑制。在此期间,TRN抑制开始抑制TC尖峰,在第4-6周影响最大。使用缺乏视网膜投影的突变小鼠表明,视网膜输入的缺失导致dLGN的TRN神经支配加速,但对从dLGN到TRN的前馈投影的发展影响很小。一起,这些实验揭示了在出生后早期年龄中如何以及何时出现丘脑内连接,并为了解丘脑皮质网络动力学的发展以及涉及TRN电路的神经发育疾病提供了基础知识。
    The thalamic reticular nucleus (TRN) serves as an important node between the thalamus and neocortex, regulating thalamocortical rhythms and sensory processing in a state dependent manner. Disruptions in TRN circuitry also figures prominently in several neurodevelopmental disorders including epilepsy, autism, and attentional defects. An understanding of how and when connections between TRN and 1st order thalamic nuclei, such as the dorsal lateral geniculate nucleus (dLGN), develop is lacking. We used the mouse visual thalamus as a model system to study the organization, pattern of innervation and functional responses between TRN and the dLGN. Genetically modified mouse lines were used to visualize and target the feedforward and feedback components of these intra-thalamic circuits and to understand how peripheral input from the retina impacts their development.Retrograde tracing of thalamocortical (TC) afferents through TRN revealed that the modality-specific organization seen in the adult, is present at perinatal ages and seems impervious to the loss of peripheral input. To examine the formation and functional maturation of intrathalamic circuits between the visual sector of TRN and dLGN, we examined when projections from each nuclei arrive, and used an acute thalamic slice preparation along with optogenetic stimulation to assess the maturation of functional synaptic responses. Although thalamocortical projections passed through TRN at birth, feedforward axon collaterals determined by vGluT2 labeling, emerged during the second postnatal week, increasing in density through the third week. Optogenetic stimulation of TC axon collaterals in TRN showed infrequent, weak excitatory responses near the end of week 1. During weeks 2-4, responses became more prevalent, grew larger in amplitude and exhibited synaptic depression during repetitive stimulation. Feedback projections from visual TRN to dLGN began to innervate dLGN as early as postnatal day 2 with weak inhibitory responses emerging during week 1. During week 2-4, inhibitory responses continued to grow larger, showing synaptic depression during repetitive stimulation. During this time TRN inhibition started to suppress TC spiking, having its greatest impact by week 4-6. Using a mutant mouse that lacks retinofugal projections revealed that the absence of retinal input led to an acceleration of TRN innervation of dLGN but had little impact on the development of feedforward projections from dLGN to TRN. Together, these experiments reveal how and when intrathalamic connections emerge during early postnatal ages and provide foundational knowledge to understand the development of thalamocortical network dynamics as well as neurodevelopmental diseases that involve TRN circuitry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    社会记忆已经在人类和其他动物中发展起来,以识别熟悉的物种,并且对于它们的生存和繁殖至关重要。这里,我们证明了感觉丘脑网状核(sTRNPvalb)中的小白蛋白阳性神经元对于小鼠记忆特异性是必要且足够的。sTRNPvalb神经元从后顶叶皮层(PPC)接受谷氨酸能投射,通过抑制束旁丘脑核(PF)来传递个体信息。抑制PPCCaMKII→sTRNPvalb→PF回路的小鼠表现出区分熟悉的特异性与新型特异性的能力。更引人注目的是,具有高电生理兴奋性和复杂的树突状树枝化的sTRNPvalb神经元子集参与上述皮质丘脑途径并存储社会记忆。单细胞RNA测序揭示了这些亚群细胞的生化基础,是蛋白质合成的强大激活。这些发现阐明了sTRNPvalb神经元通过协调迄今未知的皮质丘脑回路和抑制性记忆印迹来调节社会记忆。
    Social memory has been developed in humans and other animals to recognize familiar conspecifics and is essential for their survival and reproduction. Here, we demonstrated that parvalbumin-positive neurons in the sensory thalamic reticular nucleus (sTRNPvalb) are necessary and sufficient for mice to memorize conspecifics. sTRNPvalb neurons receiving glutamatergic projections from the posterior parietal cortex (PPC) transmit individual information by inhibiting the parafascicular thalamic nucleus (PF). Mice in which the PPCCaMKII→sTRNPvalb→PF circuit was inhibited exhibited a disrupted ability to discriminate familiar conspecifics from novel ones. More strikingly, a subset of sTRNPvalb neurons with high electrophysiological excitability and complex dendritic arborizations is involved in the above corticothalamic pathway and stores social memory. Single-cell RNA sequencing revealed the biochemical basis of these subset cells as a robust activation of protein synthesis. These findings elucidate that sTRNPvalb neurons modulate social memory by coordinating a hitherto unknown corticothalamic circuit and inhibitory memory engram.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    主观性耳鸣,没有外部声源的声音感知,通常是在噪声引起的听力损失或耳毒性药物之后。这种情况被认为是由听觉中枢的神经可塑性改变引起的,由于兴奋和抑制之间的不平衡,其特征是自发神经活动增强和同步性增强。然而,丘脑网状核(TRN)的作用,由参与丘脑皮质振荡的GABA能神经元组成的结构,在耳鸣的发病机理上仍未被探讨。
    我们使用水杨酸钠在小鼠中诱导耳鸣,并使用声惊厥的间隙前脉冲抑制(GPIAS)范例评估耳鸣样行为。我们利用组合的病毒追踪技术来识别所涉及的神经回路,并采用免疫荧光和共聚焦成像来确定细胞类型和激活的神经元。
    水杨酸处理的小鼠表现出耳鸣样行为。我们的追踪清楚地描绘了听觉特定TRN的输入和输出。我们发现听觉TRN的化学遗传激活显着降低了水杨酸引起的听觉皮层c-Fos表达的升高。
    这一发现认为TRN是耳鸣治疗的潜在调节靶标。此外,映射到听觉TRN的感觉输入提示了使用光遗传学或感觉刺激来操纵丘脑皮质活动的可能性。听觉TRN介导的神经通路的精确映射为设计有针对性的干预措施以减轻耳鸣症状提供了有希望的途径。
    UNASSIGNED: Subjective tinnitus, the perception of sound without an external acoustic source, is often subsequent to noise-induced hearing loss or ototoxic medications. The condition is believed to result from neuroplastic alterations in the auditory centers, characterized by heightened spontaneous neural activities and increased synchrony due to an imbalance between excitation and inhibition. However, the role of the thalamic reticular nucleus (TRN), a structure composed exclusively of GABAergic neurons involved in thalamocortical oscillations, in the pathogenesis of tinnitus remains largely unexplored.
    UNASSIGNED: We induced tinnitus in mice using sodium salicylate and assessed tinnitus-like behaviors using the Gap Pre-Pulse Inhibition of the Acoustic Startle (GPIAS) paradigm. We utilized combined viral tracing techniques to identify the neural circuitry involved and employed immunofluorescence and confocal imaging to determine cell types and activated neurons.
    UNASSIGNED: Salicylate-treated mice exhibited tinnitus-like behaviors. Our tracing clearly delineated the inputs and outputs of the auditory-specific TRN. We discovered that chemogenetic activation of the auditory TRN significantly reduced the salicylate-evoked rise in c-Fos expression in the auditory cortex.
    UNASSIGNED: This finding posits the TRN as a potential modulatory target for tinnitus treatment. Furthermore, the mapped sensory inputs to the auditory TRN suggest possibilities for employing optogenetic or sensory stimulations to manipulate thalamocortical activities. The precise mapping of the auditory TRN-mediated neural pathways offers a promising avenue for designing targeted interventions to alleviate tinnitus symptoms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    丘脑皮质系统在意识中起着重要作用。麻醉如何调节丘脑皮质相互作用尚不完全清楚。我们同时记录了丘脑网状核(TRN)和丘脑腹后内侧核(VPM)的局部场电位(LFP),自由运动的大鼠(n=11)的额叶和枕叶皮质的皮质图(ECoG)活动。我们分析了丘脑和皮层局部光谱功率和连通性的变化,用相位-振幅耦合(PAC)测量,相干性和多变量格兰杰因果关系,在基线状态下,静脉输注丙泊酚20、40、80mg/kg/h,并在正正反射恢复后。我们发现丙泊酚诱导的爆发抑制导致丘脑和皮质中光谱功率的同步降低(所有频带p<0.001)。异丙酚增加了PAC的交叉频率,其特征是TRN中逐渐增强的“低谷-最大值”模式和皮层中增强的“峰值-最大值”模式。在TRN调节皮质振幅的阶段,跨区域PAC增加。TRN和皮质之间的α/β带的功能连接(FC)也显着增加(p<0.040),异丙酚麻醉下TRN与皮质的定向连接增加。相比之下,皮质皮质FC显著降低(p<0.047),额叶皮质到枕叶皮质的定向连接减少。然而,通过丙泊酚麻醉,丘脑功能和方向连通性基本保持不变.光谱功率和连通性随丙泊酚剂量的变化而不同地调节,提示丘脑皮质系统神经动力学的变化可用于区分异丙酚引起的不同警觉水平。
    在线版本包含补充材料,可在10.1007/s11571-022-09912-0获得。
    The thalamocortical system plays an important role in consciousness. How anesthesia modulates the thalamocortical interactions is not completely known.  We simultaneously recorded local field potentials(LFPs) in thalamic reticular nucleus(TRN) and ventroposteromedial thalamic nucleus(VPM), and electrocorticographic(ECoG) activities in frontal and occipital cortices in freely moving rats (n = 11). We analyzed the changes in thalamic and cortical local spectral power and connectivities, which were measured with phase-amplitude coupling (PAC), coherence and multivariate Granger causality, at the states of baseline, intravenous infusion of propofol 20, 40, 80 mg/kg/h and after recovery of righting reflex. We found that propofol-induced burst-suppression results in a synchronous decrease of spectral power in thalamus and cortex (p < 0.001 for all frequency bands). The cross-frequency PAC increased by propofol, characterized by gradually stronger \'trough-max\' pattern in TRN and stronger \'peak-max\' pattern in cortex. The cross-region PAC increased in the phase of TRN modulating the amplitude of cortex. The functional connectivity (FC) between TRN and cortex for α/β bands also significantly increased (p < 0.040), with increased directional connectivity from TRN to cortex under propofol anesthesia. In contrast, the corticocortical FC significantly decreased (p < 0.047), with decreased directional connectivity from frontal cortex to occipital cortex. However, the thalamothalamic functional and directional connectivities remained largely unchanged by propofol anesthesia.  The spectral powers and connectivities are differentially modulated with the changes of propofol doses, suggesting the changes in neural dynamics in thalamocortical system could be used for distinguishing different vigilance levels caused by propofol.
    UNASSIGNED: The online version contains supplementary material available at 10.1007/s11571-022-09912-0.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    小电导钙激活钾(SK)通道是众所周知的神经元兴奋性调节剂。在丘脑中心,SK2通道作为丘脑网状神经元的起搏器,在丘脑皮层回路中起关键作用。几个疾病相关基因在这些神经元中高度富集,包括已知与精神分裂症和注意力障碍有关的基因,这可能会影响神经元的放电。本研究通过在脑切片中进行全细胞膜片钳记录,评估了SK通道的药理调节在丘脑网状神经元的放电模式和固有特性中的作用。使用了两种SK正变构调节剂和一种负变构调节剂:CyPPA,分别为NS309和NS8593。通过作用于脉冲后超极化(AHP),SK通道的负调制导致动作电位(AP)激发增加,增加了突发持续时间,并减少了突发之间的间隔。相反,CyPPA和NS309都增加了后爆发AHP,延长突发间隔,在NS309的情况下,这还导致AP射击减少。SK通道活动的改变有望改变丘脑皮质回路的功能。靶向SK通道在治疗涉及丘脑网状功能障碍的疾病如精神病和神经发育障碍方面可能是有希望的。
    Small conductance calcium-activated potassium (SK) channels are well-known regulators of neuronal excitability. In the thalamic hub, SK2 channels act as pacemakers of thalamic reticular neurons, which play a key role in the thalamocortical circuit. Several disease-linked genes are highly enriched in these neurons, including genes known to be associated with schizophrenia and attentional disorders, which could affect neuronal firing. The present study assessed the effect of pharmacological modulation of SK channels in the firing pattern and intrinsic properties of thalamic reticular neurons by performing whole cell patch clamp recordings in brain slices. Two SK positive allosteric modulators and one negative allosteric modulator were used: CyPPA, NS309, and NS8593, respectively. By acting on the burst afterhyperpolarization (AHP), negative modulation of SK channels resulted in increased action potential (AP) firing, increased burst duration, and decreased intervals between bursts. Conversely, both CyPPA and NS309 increased the afterburst AHP, prolonging the interburst interval, which additionally resulted in reduced AP firing in the case of NS309. Alterations in SK channel activity would be expected to alter functioning of thalamocortical circuits. Targeting SK channels could be promising in treating disorders involving thalamic reticular dysfunction such as psychiatric and neurodevelopmental disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Case Reports
    一名76岁男性患者入院治疗右颞干急性脑梗死,右外侧丘脑,和右肺区域。尽管他的整体认知功能几乎正常,他在视野的同义左下象限表现出视觉敏感度降低,左单边空间忽略(USN),同时失认症。左USN在梗死发作后4个月改善;然而,同时失认症持续存在。据我们所知,这是第一例由右颞叶干脑梗死引起的同时性失认症,右外侧丘脑,和右肺区域。
    A 76-year-old male patient was admitted to our hospital for the treatment of acute cerebral infarction in the right temporal stem, right lateral thalamus, and right pulvinar regions. Although his overall cognitive function was almost normal, he exhibited reduced visual sensitivity in the homonymous lower left quadrant of the visual field, left unilateral spatial neglect (USN), and simultanagnosia. Left USN improved 4 months after the onset of infarction; however, simultanagnosia persisted. To the best of our knowledge, this is the first case of simultanagnosia caused by cerebral infarction in the right temporal stem, right lateral thalamus, and right pulvinar regions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    外部苍白球(GP)的放电速率使基底神经节-丘脑-皮层网络同步,从而控制GABA能输出到不同的核。在这种情况下,两个发现是重要的:由GABAB受体调节的GP的活性和GABA能传递以及GP-丘脑网状核(RTn)途径的存在,其功能未知。GABAB受体通过该网络在皮质动力学中的功能参与是可行的,因为RTn控制丘脑和皮质之间的传递。为了分析这个假设,在麻醉大鼠中,我们使用GP注射GABAB激动剂巴氯芬和拮抗剂沙氯芬前后的RTn神经元和运动皮质(MCx)脑电图的单单位记录.我们发现GABAB激动剂会增加RTn的加标速率,并且这种响应会降低MCx中β频段的频谱密度。此外,注射GABAB拮抗剂降低了RTn的放电活性,并逆转了MCx中β频带功率谱的影响。我们的结果证明,GP通过RTn活动的强直调节,通过GP-RTn网络调节皮层振荡动力学。
    The external globus pallidus (GP) firing rate synchronizes the basal ganglia-thalamus-cortex network controlling GABAergic output to different nuclei. In this context, two findings are significant: the activity and GABAergic transmission of the GP modulated by GABA B receptors and the presence of the GP-thalamic reticular nucleus (RTn) pathway, the functionality of which is unknown. The functional participation of GABA B receptors through this network in cortical dynamics is feasible because the RTn controls transmission between the thalamus and cortex. To analyze this hypothesis, we used single-unit recordings of RTn neurons and electroencephalograms of the motor cortex (MCx) before and after GP injection of the GABA B agonist baclofen and the antagonist saclofen in anesthetized rats. We found that GABA B agonists increase the spiking rate of the RTn and that this response decreases the spectral density of beta frequency bands in the MCx. Additionally, injections of GABA B antagonists decreased the firing activity of the RTn and reversed the effects in the power spectra of beta frequency bands in the MCx. Our results proved that the GP modulates cortical oscillation dynamics through the GP-RTn network via tonic modulation of RTn activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脑震荡后持续性脑震荡后症状(PCS)的发病机制尚不清楚。已知丘脑损伤在PCS延长中起作用,而引发持续性PCS的证据和生物标志物从未被阐明。我们收集了脑震荡后患者和啮齿动物的纵向神经影像学和行为数据,补充啮齿动物的组织学染色数据,解开持久性PCS的早期生物标志物。获得扩散张量成像(DTI)来研究丘脑损伤,而丘脑皮质的定量相干性是通过静息状态功能MRI评估丘脑皮质功能和预测长期行为结果得出的。症状延长的患者在双侧丘脑(丘脑周围区域)的边界显示出异常的DTI衍生指数。持续症状的患者和大鼠均显示不同丘脑皮质回路之间的丘脑皮质相干性增强,破坏了丘脑皮质的多功能性。在啮齿动物中,持续的DTI异常在丘脑网状核(TRN)通过免疫组织化学验证,并与丘脑皮质相干性增强有关。还使用另一个患者队列验证了这些用于长期PCS的相干性生物标志物的强预测能力。脑震荡后事件可能始于持续性TRN损伤,其次是丘脑皮质相干性中断和PCS延长。基于功能性MRI的相干性测量可以作为长期PCS早期预测的替代生物标志物。
    The pathogenetic mechanism of persistent post-concussive symptoms (PCS) following concussion remains unclear. Thalamic damage is known to play a role in PCS prolongation while the evidence and biomarkers that trigger persistent PCS have never been elucidated. We collected longitudinal neuroimaging and behavior data from patients and rodents after concussion, complemented with rodents\' histological staining data, to unravel the early biomarkers of persistent PCS. Diffusion tensor imaging (DTI) were acquired to investigated the thalamic damage, while quantitative thalamocortical coherence was derived through resting-state functional MRI for evaluating thalamocortical functioning and predicting long-term behavioral outcome. Patients with prolonged symptoms showed abnormal DTI-derived indices at the boundaries of bilateral thalami (peri-thalamic regions). Both patients and rats with persistent symptoms demonstrated enhanced thalamocortical coherence between different thalamocortical circuits, which disrupted thalamocortical multifunctionality. In rodents, the persistent DTI abnormalities were validated in thalamic reticular nucleus (TRN) through immunohistochemistry, and correlated with enhanced thalamocortical coherence. Strong predictive power of these coherence biomarkers for long-term PCS was also validated using another patient cohort. Postconcussive events may begin with persistent TRN injury, followed by disrupted thalamocortical coherence and prolonged PCS. Functional MRI-based coherence measures can be surrogate biomarkers for early prediction of long-term PCS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:许多生物物理和非生物物理模型已经能够再现不同脑电图睡眠节律下的皮质丘脑活动,但它们都不包括新皮层网络和单个丘脑神经元固有地产生这些波的已知能力。
    方法:我们建立了一个大规模的皮质丘脑模型,该模型在解剖连接中具有高保真度,该模型由单个皮质柱和一阶和高阶丘脑核组成。该模型受到不同的新皮层兴奋性和抑制性神经元群体的约束,这些神经元群体会引起缓慢的(<1Hz)振荡,并且当与新皮层分离时,丘脑神经元会产生睡眠波。
    结果:我们的模型忠实地再现了所有EEG睡眠波以及从失步EEG到纺锤波的过渡,缓慢(<1Hz)振荡,和δ波通过逐渐增加神经元膜超极化,因为它发生在完整的大脑中。此外,我们的模型显示,慢波(<1Hz)最常在丘脑皮层神经元的小集合中开始,尽管它们也可能起源于皮层5。此外,与孤立的皮质网络相比,丘脑皮质神经元的输入增加了EEG慢波(<1Hz)的频率。
    结论:我们的模拟挑战了目前对睡眠波产生的时间动态机制的理解,并提出了可测试的预测。
    Many biophysical and non-biophysical models have been able to reproduce the corticothalamic activities underlying different EEG sleep rhythms but none of them included the known ability of neocortical networks and single thalamic neurons to generate some of these waves intrinsically.
    We built a large-scale corticothalamic model with a high fidelity in anatomical connectivity consisting of a single cortical column and first- and higher-order thalamic nuclei. The model is constrained by different neocortical excitatory and inhibitory neuronal populations eliciting slow (<1 Hz) oscillations and by thalamic neurons generating sleep waves when isolated from the neocortex.
    Our model faithfully reproduces all EEG sleep waves and the transition from a desynchronized EEG to spindles, slow (<1 Hz) oscillations, and delta waves by progressively increasing neuronal membrane hyperpolarization as it occurs in the intact brain. Moreover, our model shows that slow (<1 Hz) waves most often start in a small assembly of thalamocortical neurons though they can also originate in cortical layer 5. Moreover, the input of thalamocortical neurons increases the frequency of EEG slow (<1 Hz) waves compared to those generated by isolated cortical networks.
    Our simulations challenge current mechanistic understanding of the temporal dynamics of sleep wave generation and suggest testable predictions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号