template switching

  • 文章类型: Journal Article
    捕获5'序列内容而无需繁琐的文库操作的端到端RNA测序方法非常感兴趣,特别是对于长RNA的分析。虽然模板切换方法已经通过分布式短读RT开发用于RNA测序,例如SMART-Seq方法中使用的MMLVRT酶,他们还没有适应利用超进行性RT的力量,例如从II组自我剪接内含子衍生的那些。为了促进这种转变,我们解剖了指导RT酶进行的多步模板转换反应的酶特异性和效率的各个过程,在这种情况下,通过一种被称为马拉松RT的特征明确的酶。值得注意的是,这是同类研究中的第一项,任何RT。首先,我们表征并优化了当RT酶延伸超过RNA5'末端时发生的酶促非模板添加(NTA)反应,我们确定了NTA反应的核苷酸特异性。然后,我们评估了专门的模板转换寡核苷酸的结合特异性,优化其序列和化学性质,以指导高效的模板转换反应。解剖和优化了这些单独的步骤,然后,我们将它们统一成一个用马拉松RT酶进行RNA测序的程序,使用表征良好的RNA参考集。所得读段跨越转录物浓度的6个对数范围,并且准确地表示长度和组成两者中的输入RNA身份。我们还从总的人RNA和聚(A)富集的RNA开始进行RNA-seq,短读和长读测序表明,MarathonRT增强了常规RT对看不见的RNA分子的发现。总之,通过对RT酶采用机制酶学,并使用它们来修饰RNA-seq技术,我们已经建立了一个新的管道,包含长RNA转录本混合物的复杂RNA文库的精确测序。
    End-to-end RNA sequencing methods that capture 5\'-sequence content without cumbersome library manipulations are of great interest, particularly for analysis of long RNAs. While template-switching methods have been developed for RNA sequencing by distributive short-read RTs, such as the MMLV RT enzymes used in SMART-Seq methods, they have not been adapted to leverage the power of ultraprocessive RTs, such as those that derive from group II self-splicing introns. To facilitate this transition, we dissected the individual processes that guide the enzymatic specificity and efficiency of the multi-step template switching reaction carried out by RT enzymes, in this case, by a well-characterized enzyme known as MarathonRT. Remarkably, this is the first study of its kind, for any RT. First, we characterized and optimized the enzymatic nontemplated addition (NTA) reaction that occurs when the RT enzyme extends past the RNA 5\'-terminus, and we determined the nucleotide specificity of the NTA reaction. We then evaluated the binding specificity of specialized template-switching oligonucleotides, optimizing their sequences and chemical properties to guide efficient template switching reaction. Having dissected and optimized these individual steps, we then unified them into a procedure for performing RNA sequencing with MarathonRT enzymes, using a well-characterized RNA reference set. The resulting reads span a six-log range in transcript concentration and accurately represent the input RNA identities in both length and composition. We also performed RNA-seq starting from total human RNA and poly(A)-enriched RNA, with short and long-read sequencing demonstrating that MarathonRT enhances the discovery of unseen RNA molecules by conventional RT. Altogether, by employing mechanistic enzymology on RT enzymes and using them to modify RNA-seq technologies, we have generated a new pipeline for rapid, accurate sequencing of complex RNA libraries containing mixtures of long RNA transcripts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    重复三重复/反向重复(DUP-TRP/INV-DUP)结构是复杂的基因组重排(CGR)。尽管它已被确定为基因组疾病和癌症基因组中重要的致病性DNA突变特征,其架构仍未解决。这里,我们通过调查通过阵列比较基因组杂交(aCGH)鉴定的24例患者的DNA,研究了DUP-TRP/INV-DUP的基因组结构,我们在这些患者身上发现了4种预测结构变异(SV)单倍型中存在4种的证据.使用短阅读基因组测序(GS)的组合,长读GS,光学基因组作图,和单细胞DNA模板链测序(strand-seq),在18个样本中解析了单倍型结构.4个样品中的模板转换点显示为反向重复序列对中100%核苷酸相似性的~2.2-5.5kb的片段。这些数据提供了反向低拷贝重复作为重组底物的实验证据。这种类型的CGR可以导致在易感剂量敏感基因座中产生多种SV单倍型的多个构象。
    The duplication-triplication/inverted-duplication (DUP-TRP/INV-DUP) structure is a complex genomic rearrangement (CGR). Although it has been identified as an important pathogenic DNA mutation signature in genomic disorders and cancer genomes, its architecture remains unresolved. Here, we studied the genomic architecture of DUP-TRP/INV-DUP by investigating the DNA of 24 patients identified by array comparative genomic hybridization (aCGH) on whom we found evidence for the existence of 4 out of 4 predicted structural variant (SV) haplotypes. Using a combination of short-read genome sequencing (GS), long-read GS, optical genome mapping, and single-cell DNA template strand sequencing (strand-seq), the haplotype structure was resolved in 18 samples. The point of template switching in 4 samples was shown to be a segment of ∼2.2-5.5 kb of 100% nucleotide similarity within inverted repeat pairs. These data provide experimental evidence that inverted low-copy repeats act as recombinant substrates. This type of CGR can result in multiple conformers generating diverse SV haplotypes in susceptible dosage-sensitive loci.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Review
    准确的DNA复制和转录延伸对于防止未复制DNA的积累和基因组不稳定性至关重要。细胞已经进化出多种机制来处理受损的复制叉进展,受到内在和外在障碍的挑战。枯草芽孢杆菌,采用多种形式的分化和发展,作为研究应对复制应激以保持基因组稳定性所需的途径的优秀模型系统。这篇综述的重点是遗传学,蛋白质的单分子编排和生化特性,可以规避复制性停滞,从而恢复DNA合成。RecA重组酶,它的调解员(RecO,RecR,RadA/Sms)和调制器(RecF,RecX,拉拉,RecU,RecD2,PcrA),维修许可(DisA),叉子改型机(RuvAB,RecG,RecD2,RadA/Sms,PriA),霍利迪交界处(RecU),核酸酶(RnhC,DinG),和跨损伤合成DNA聚合酶(PolY1和PolY2)是克服复制压力所需的关键功能,前提是叉子不会倒塌。
    Accurate DNA replication and transcription elongation are crucial for preventing the accumulation of unreplicated DNA and genomic instability. Cells have evolved multiple mechanisms to deal with impaired replication fork progression, challenged by both intrinsic and extrinsic impediments. The bacterium Bacillus subtilis, which adopts multiple forms of differentiation and development, serves as an excellent model system for studying the pathways required to cope with replication stress to preserve genomic stability. This review focuses on the genetics, single molecule choreography, and biochemical properties of the proteins that act to circumvent the replicative arrest allowing the resumption of DNA synthesis. The RecA recombinase, its mediators (RecO, RecR, and RadA/Sms) and modulators (RecF, RecX, RarA, RecU, RecD2, and PcrA), repair licensing (DisA), fork remodelers (RuvAB, RecG, RecD2, RadA/Sms, and PriA), Holliday junction resolvase (RecU), nucleases (RnhC and DinG), and translesion synthesis DNA polymerases (PolY1 and PolY2) are key functions required to overcome a replication stress, provided that the fork does not collapse.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    复制过程中DNA损伤的正确解决对于基因组稳定性至关重要。FBH1,UvrD,解旋酶在DNA损伤反应中起着至关重要的作用。FBH1促进双链断裂形成和信号传导以响应延长的复制应激以启动细胞凋亡。人FBH1调节RAD51以抑制同源重组。先前的研究表明,RAD51的失调可能有助于FBH1缺陷细胞的复制应激抗性,但是潜在的机制仍然未知。这里,我们提供了直接证据表明RAD51促进FBH1缺陷细胞的复制应激抗性。我们证明了使用小分子对RAD51的抑制作用,B02部分挽救FBH1缺陷细胞中的双链断裂信号传导。我们表明,仅抑制RAD51的链交换活性可挽救FBH1敲除细胞中的双链断裂信号。最后,我们发现UBC13是一种促进RAD51依赖性模板转换的E2蛋白,拯救双链断裂形成和信号传导使FBH1缺陷细胞对复制应激敏感。我们的结果表明FBH1调节模板转换以促进复制应激敏感性。
    The proper resolution of DNA damage during replication is essential for genome stability. FBH1, a UvrD, helicase plays crucial roles in the DNA damage response. FBH1 promotes double strand break formation and signaling in response to prolonged replication stress to initiate apoptosis. Human FBH1 regulates RAD51 to inhibit homologous recombination. A previous study suggested that mis-regulation of RAD51 may contribute to replication stress resistance in FBH1-deficient cells, but the underlying mechanism remains unknown. Here, we provide direct evidence that RAD51 promotes replication stress resistance in FBH1-deficient cells. We demonstrate inhibition of RAD51 using the small molecule, B02, partially rescues double strand break signaling in FBH1-deficient cells. We show that inhibition of only the strand exchange activity of RAD51 rescues double strand break signaling in FBH1 knockout cells. Finally, we show that depletion of UBC13, a E2 protein that promotes RAD51-dependent template switching, rescues double strand break formation and signaling sensitizing FBH1-deficient cells to replication stress. Our results suggest FBH1 regulates template switching to promote replication stress sensitivity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    自从BarbaraMcClintock博士发现第一个转座子以来,转座因子(TEs)的普遍性和多样性已逐渐得到认可。作为基本的遗传成分,TE不仅通过贡献功能序列(例如,McClintock博士所说的调节元件或“控制器”),也可以通过改组基因组序列。在后一方面,TE介导的基因重复有助于新基因的产生并引起了广泛的兴趣。随着这一领域的发展,我们在此试图通过关注跨不同TE类型产生的重复出现的共同规则来概述TE介导的重复.具体来说,尽管跨TE的换位机制存在巨大分歧,我们确定了各种TE介导的复制机制的三个共同特征,包括末端旁路,模板切换,和复发性移位。这三个特征导致一个共同的功能结果,即,TE介导的重复倾向于进行外显子改组和新功能化。因此,突变机制的内在特性限制了这些重复的进化轨迹。最后,我们讨论了该领域的未来,包括对TE介导的重复的重复机制和功能的深入描述。
    Since the discovery of the first transposon by Dr. Barbara McClintock, the prevalence and diversity of transposable elements (TEs) have been gradually recognized. As fundamental genetic components, TEs drive organismal evolution not only by contributing functional sequences (e.g., regulatory elements or \"controllers\" as phrased by Dr. McClintock) but also by shuffling genomic sequences. In the latter respect, TE-mediated gene duplications have contributed to the origination of new genes and attracted extensive interest. In response to the development of this field, we herein attempt to provide an overview of TE-mediated duplication by focusing on common rules emerging across duplications generated by different TE types. Specifically, despite the huge divergence of transposition machinery across TEs, we identify three common features of various TE-mediated duplication mechanisms, including end bypass, template switching, and recurrent transposition. These three features lead to one common functional outcome, namely, TE-mediated duplicates tend to be subjected to exon shuffling and neofunctionalization. Therefore, the intrinsic properties of the mutational mechanism constrain the evolutionary trajectories of these duplicates. We finally discuss the future of this field including an in-depth characterization of both the duplication mechanisms and functions of TE-mediated duplicates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    当复制叉在DNA损伤位点停滞时,DNA损伤旁路途径会促进受损DNA的复制。模板转换是一种DNA损伤旁路途径,其中叉反转解旋酶将停滞的复制叉转换为称为鸡脚中间体的四向DNA连接,随后通过复制DNA聚合酶延伸。在酵母中,通过Rad5解旋酶使用未知的机制进行叉反转。为了更好地理解Rad5的作用机制及其对不同叉DNA底物的特异性,我们使用基于FRET的检测方法实时观察分叉逆转.我们检查了Rad5在前导链或滞后链中存在短缺口以及滞后链中存在或不存在RPA和RNA引物的情况下结合和催化各种叉DNA底物逆转的能力。我们发现Rad5优先反转具有短间隙(10至30nt)的叉DNA底物。)在前导链中。因此,Rad5优先逆转形成鸡足中间体的叉DNA底物,其具有5个突出部分,可以在随后的模板转换步骤中通过复制DNA聚合酶延伸。
    DNA damage bypass pathways promote the replication of damaged DNA when replication forks stall at sites of DNA damage. Template switching is a DNA damage bypass pathway in which fork-reversal helicases convert stalled replication forks into four-way DNA junctions called chicken foot intermediates, which are subsequently extended by replicative DNA polymerases. In yeast, fork-reversal is carried out by the Rad5 helicase using an unknown mechanism. To better understand the mechanism of Rad5 and its specificity for different fork DNA substrates, we used a FRET-based assay to observe fork reversal in real time. We examined the ability of Rad5 to bind and catalyze the reversal of various fork DNA substrates in the presence of short gaps in the leading or lagging strand as well as in the presence or absence of RPA and RNA primers in the lagging strand. We found that Rad5 preferentially reverses fork DNA substrates with short gaps (10 to 30 nt.) in the leading strand. Thus, Rad5 preferentially reverses fork DNA substrates that form chicken foot intermediates with 5\' overhangs that can be extended by replicative DNA polymerases during the subsequent steps of template switching.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    严重突变的SARS-CoV-2变体(Omicron;Pango谱系B.1.1.29和BA亚谱系)的出现及其迅速传播到75多个国家,引发了全球公共卫生警报。表征Omicron的突变谱对于解释其与其他SARS-CoV-2变体共有或不同的临床表型是必要的。我们将最初循环的Omicron变体(现在称为BA.1)的突变与先前关注的变体(Alpha,Beta,Gamma,和三角洲),感兴趣的变体(Lambda,穆,埃塔,Iota,和Kappa),和约1500个SARS-CoV-2谱系,构成约580万个SARS-CoV-2基因组。Omicron的刺突蛋白具有26个氨基酸突变(23个取代,2个删除,和1插入)与其他关注的变体相比是不同的。虽然在以前的SARS-CoV-2谱系中出现了替代和缺失突变,之前在任何其他SARS-CoV-2谱系中未观察到插入突变(ins214EPE).这里,我们考虑并讨论了各种机制,通过这些机制可以获得编码ins214EPE的核苷酸序列,包括本地复制,聚合酶滑脱,和模板切换。尽管我们无法确定机制,我们强调了模板切换的合理性。对插入的核苷酸序列和侧翼区的同源性的分析表明,这种模板转换事件可能涉及SARS-CoV-2变体的基因组(例如,B.1.1菌株),与SARS-CoV-2感染相同宿主细胞的其他人类冠状病毒(例如,HCoV-OC43或HCoV-229E),或在被Omicron前体感染的宿主细胞中表达的人转录物。
    The emergence of a heavily mutated SARS-CoV-2 variant (Omicron; Pango lineage B.1.1.529 and BA sublineages) and its rapid spread to over 75 countries raised a global public health alarm. Characterizing the mutational profile of Omicron is necessary to interpret its clinical phenotypes which are shared with or distinctive from those of other SARS-CoV-2 variants. We compared the mutations of the initially circulating Omicron variant (now known as BA.1) with prior variants of concern (Alpha, Beta, Gamma, and Delta), variants of interest (Lambda, Mu, Eta, Iota, and Kappa), and ~1500 SARS-CoV-2 lineages constituting ~5.8 million SARS-CoV-2 genomes. Omicron\'s Spike protein harbors 26 amino acid mutations (23 substitutions, 2 deletions, and 1 insertion) that are distinct compared to other variants of concern. While the substitution and deletion mutations appeared in previous SARS-CoV-2 lineages, the insertion mutation (ins214EPE) was not previously observed in any other SARS-CoV-2 lineage. Here, we consider and discuss various mechanisms through which the nucleotide sequence encoding for ins214EPE could have been acquired, including local duplication, polymerase slippage, and template switching. Although we are not able to definitively determine the mechanism, we highlight the plausibility of template switching. Analysis of the homology of the inserted nucleotide sequence and flanking regions suggests that this template-switching event could have involved the genomes of SARS-CoV-2 variants (e.g., the B.1.1 strain), other human coronaviruses that infect the same host cells as SARS-CoV-2 (e.g., HCoV-OC43 or HCoV-229E), or a human transcript expressed in a host cell that was infected by the Omicron precursor.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    RNA重组是与RNA病毒进化紧密相关的遗传转变的主要驱动因素。基因组重组在很大程度上促进了新的病毒谱系的出现,宿主向性的扩张,适应新环境,毒力和发病机制。这里,我们回顾了最近的一些进展,这些进展提高了我们对正链RNA病毒重组的理解,包括重组触发因素及其背后的机制。RNA重组的研究有助于预测病毒重组事件的概率和结果,以及设计重组频率降低的病毒作为开发减毒活疫苗的候选者。病毒重组的监测应仍然是检测突发性病毒株的优先事项。只有通过扩大我们对这些事件如何被触发和调节的理解,才能实现这一目标。
    RNA recombination is a major driver of genetic shifts tightly linked to the evolution of RNA viruses. Genomic recombination contributes substantially to the emergence of new viral lineages, expansion in host tropism, adaptations to new environments, and virulence and pathogenesis. Here, we review some of the recent progress that has advanced our understanding of recombination in positive-strand RNA viruses, including recombination triggers and the mechanisms behind them. The study of RNA recombination aids in predicting the probability and outcome of viral recombination events, and in the design of viruses with reduced recombination frequency as candidates for the development of live attenuated vaccines. Surveillance of viral recombination should remain a priority in the detection of emergent viral strains, a goal that can only be accomplished by expanding our understanding of how these events are triggered and regulated.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    核苷酸类似物可以通过停止病毒RNA聚合酶或通过将致死突变引入病毒基因组来帮助对抗RNA病毒生长。Janissen和Woodman等人。使用了单分子,测序,测序和病毒学方法揭示抗病毒T-1106提供了第三种反击机制:诱导重组。
    Nucleotide analogs can help to combat RNA virus growth by stalling the viral RNA polymerase or by introducing lethal mutations into the viral genome. Janissen and Woodman et al. have used single-molecule, sequencing, and virological methods to reveal that antiviral T-1106 provides a third mechanism of counterattack: inducing recombination.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    高通量RNA测序(RNA-seq)极大地促进了我们对基因表达和疾病病因的理解,并且是识别各种生物体中生物标志物的强大工具。然而,大多数RNA-SEQ方法依赖于逆转录病毒逆转录酶(RT),具有固有的低保真度和持续合成能力的酶,将RNA转化为cDNA用于测序。这里,我们描述了使用热稳定II组内含子逆转录酶(TGIRT)的RNA-seq方案,具有高保真度,可持续发展,和链置换活动,以及有效的模板转换活性,可实现高效和无缝的RNA-seq衔接子添加。通过结合这些活动,TGIRT-seq能够同时分析来自少量起始材料的所有RNA生物型,具有优越的RNA-SEQ指标,以及前所未有的结构化RNA测序能力。Illumina测序的TGIRT-seq协议由三个步骤组成:(i)添加3'RNA-seq衔接子,与靶RNA的3'末端的cDNA合成的起始相结合,通过从合成衔接子RNA/DNA起始双链体的模板转换;(ii)添加5'RNA-seq衔接子,通过使用热稳定的5'AppDNA/RNA连接酶将衔接子寡核苷酸连接到完成的cDNA的3'末端;(iii)最小的PCR扩增,添加Illumina测序的捕获位点和索引。Illumina测序平台的TGIRT-seq已用于对核糖耗尽的编码和非编码RNA进行全面分析,化学片段化的细胞RNA,和分析完整的(非化学片段)细胞,细胞外囊泡(EV),和血浆RNA,它产生连续全长的结构小的非编码RNA(sncRNA)的端到端序列,包括tRNA,snoRNAs,snRNAs,pre-miRNA,和全长切除的线性内含子(FLEXI)RNA。图形摘要:图1。Illumina测序的TGIRT-seq方案概述。主要步骤是:(1)从具有1-nt3\'DNA突出端的合成R2RNA/R2RDNA起始双链体进行模板转换(A的混合物,C,G,和T残基,表示为N),与靶RNA的3个核苷酸碱基配对,通过添加dNTPs启动逆转录后,将R2R衔接子无缝连接到所得cDNA的5'末端;(2)将R1R衔接子连接到完成的cDNA的3'末端;和(3)使用添加Illumina捕获位点(P5和P7)和条形码序列(索引5和7)的引物进行最小PCR扩增。索引7条形码是必需的,虽然索引5条形码是可选的,提供独特的双指数(UDI)。
    High-throughput RNA sequencing (RNA-seq) has extraordinarily advanced our understanding of gene expression and disease etiology, and is a powerful tool for the identification of biomarkers in a wide range of organisms. However, most RNA-seq methods rely on retroviral reverse transcriptases (RTs), enzymes that have inherently low fidelity and processivity, to convert RNAs into cDNAs for sequencing. Here, we describe an RNA-seq protocol using Thermostable Group II Intron Reverse Transcriptases (TGIRTs), which have high fidelity, processivity, and strand-displacement activity, as well as a proficient template-switching activity that enables efficient and seamless RNA-seq adapter addition. By combining these activities, TGIRT-seq enables the simultaneous profiling of all RNA biotypes from small amounts of starting material, with superior RNA-seq metrics, and unprecedented ability to sequence structured RNAs. The TGIRT-seq protocol for Illumina sequencing consists of three steps: (i) addition of a 3\' RNA-seq adapter, coupled to the initiation of cDNA synthesis at the 3\' end of a target RNA, via template switching from a synthetic adapter RNA/DNA starter duplex; (ii) addition of a 5\' RNA-seq adapter, by using thermostable 5\' App DNA/RNA ligase to ligate an adapter oligonucleotide to the 3\' end of the completed cDNA; (iii) minimal PCR amplification, to add capture sites and indices for Illumina sequencing. TGIRT-seq for the Illumina sequencing platform has been used for comprehensive profiling of coding and non-coding RNAs in ribodepleted, chemically fragmented cellular RNAs, and for the analysis of intact (non-chemically fragmented) cellular, extracellular vesicle (EV), and plasma RNAs, where it yields continuous full-length end-to-end sequences of structured small non-coding RNAs (sncRNAs), including tRNAs, snoRNAs, snRNAs, pre-miRNAs, and full-length excised linear intron (FLEXI) RNAs. Graphic abstract: Figure 1.Overview of the TGIRT-seq protocol for Illumina sequencing.Major steps are: (1) Template switching from a synthetic R2 RNA/R2R DNA starter duplex with a 1-nt 3\' DNA overhang (a mixture of A, C, G, and T residues, denoted N) that base pairs to the 3\' nucleotide of a target RNA, and upon initiating reverse transcription by adding dNTPs, seamlessly links an R2R adapter to the 5\' end of the resulting cDNA; (2) Ligation of an R1R adapter to the 3\' end of the completed cDNA; and (3) Minimal PCR amplification with primers that add Illumina capture sites (P5 and P7) and barcode sequences (indices 5 and 7). The index 7 barcode is required, while the index 5 barcode is optional, to provide unique dual indices (UDIs).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号