tandem catalysis

串联催化
  • 文章类型: Journal Article
    电化学硝酸盐还原反应(NO3RR)是实现氨气产生和废水处理的一种有前途的方法。然而,从NO3-到NH3的转化涉及多个质子耦合的电子转移过程和副产物(NO2-,H2等),使高氨选择性是一个挑战。在这里,由P-Cu团簇和P-Co(OH)2纳米片组成的两相纳米碳粉P-Cu/Co(OH)2电催化剂旨在与两步串联过程(NO3-至NO2-和NO2-至NH3)更兼容,避免过量的NO2积累,优化整个串联反应。专注于最初的2e-过程,P-Cu中Cu位被抑制的*NO2解吸导致电解质中更合适的NO2释放。随后,由于热力学优势和活性氢的贡献,P-Co(OH)2在后面的6e-过程中表现出优异的捕获和转化解吸的NO2的能力。在1mKOH+0.1mNO3-中,与可逆氢电极相比,P-Cu/Co(OH)2在-0.4V下可产生出色的NH3产率,为42.63mgh-1cm-2,NH3法拉第效率为97.04%。从优化串联催化反应的角度来看,这种匹配良好的两步工艺实现了显着的NH3合成性能,为NO3RR电催化剂的设计提供了新的指导。
    Electrochemical nitrate reduction reaction (NO3RR) is a promising approach to realize ammonia generation and wastewater treatment. However, the transformation from NO3 - to NH3 involves multiple proton-coupled electron transfer processes and by-products (NO2 -, H2, etc.), making high ammonia selectivity a challenge. Herein, a two-phase nanoflower P-Cu/Co(OH)2 electrocatalyst consisting of P-Cu clusters and P-Co(OH)2 nanosheets is designed to match the two-step tandem process (NO3 - to NO2 - and NO2 - to NH3) more compatible, avoiding excessive NO2 - accumulation and optimizing the whole tandem reaction. Focusing on the initial 2e- process, the inhibited *NO2 desorption on Cu sites in P-Cu gives rise to the more appropriate NO2 - released in electrolyte. Subsequently, P-Co(OH)2 exhibits a superior capacity for trapping and transforming the desorbed NO2 - during the latter 6e- process due to the thermodynamic advantage and contributions of active hydrogen. In 1 m KOH + 0.1 m NO3 -, P-Cu/Co(OH)2 leads to superior NH3 yield rate of 42.63 mg h- 1 cm- 2 and NH3 Faradaic efficiency of 97.04% at -0.4 V versus the reversible hydrogen electrode. Such a well-matched two-step process achieves remarkable NH3 synthesis performance from the perspective of optimizing the tandem catalytic reaction, offering a novel guideline for the design of NO3RR electrocatalysts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    串联催化被广泛用于移动源的多污染物控制,但在固定源排放消除中很少有报道。这项工作提出了一种串联排列方式,采用上流V2O5/TiO2+下流Cr2O3/TiO2催化剂,实现了工业烟气中NOx和C3H8的高效协同控制。此外,这种安排成功地减轻了在NH3-SCR工艺期间不需要的N2O形成。与传统的Cr2O3-V2O5/TiO2催化剂的浸渍方法相比,V2O5/TiO2Cr2O3/TiO2串联催化剂可使NOx和C3H8转化率分别提高4.2%和39.5%,分别,在350°C这可能归因于Cr物种是C3H8氧化的活性位点,催化剂的串联排列有利于活性组分在载体上的均匀分散。此外,由于优先去除NOx比上游的V2O5/TiO2催化剂,串联催化剂明显减轻了NH3-SCR过程中由Cr物种引起的N2O形成。在这里,与Cr2O3-V2O5/TiO2催化剂相比,在350°C时N2O的形成显着减少了240.5%,实现“一石三鸟”的工业烟气多污染物排放控制。
    Tandem catalysis is widely adopted for multipollutant control in mobile sources but has rarely been reported in stationary source emission elimination. This work proposed a tandem arrangement way with up-streamed V2O5/TiO2 + down-streamed Cr2O3/TiO2 catalysts, which could achieve the efficient synergistic control of NOx and C3H8 in industrial flue gas. Moreover, this arrangement successfully alleviated the unwanted N2O formation during the NH3 -SCR process. Compared to the conventional impregnation method of the Cr2O3-V2O5/TiO2 catalyst, the tandem catalysts of V2O5/TiO2 + Cr2O3/TiO2 could enhance the NOx and C3H8 conversion by 4.2% and 39.5%, respectively, at 350 °C. It might be attributed to the fact that Cr species was the active site for C3H8 oxidation, and the tandem arrangement of catalysts was beneficial to even dispersion of active components on supports. Furthermore, due to the preferential NOx removal over the up-streamed V2O5/TiO2 catalyst, the tandem catalysts obviously alleviated the N2O formation caused by Cr species during the NH3-SCR process. Herein, it significantly decreased N2O formation by 240.5% at 350 °C compared to the Cr2O3-V2O5/TiO2 catalyst, achieving multipollutant emission control from industrial flue gas with the performance of \"one stone three birds\".
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    设计了一种鱼骨形且热化学稳定的2D金属有机框架(MOF),具有多峰活性中心甲板孔壁。氧化还原活性的[Co2(COO)4]节点和噻唑并[5,4-d]噻唑官能化使这种混合配体MOF受益,在10mAcm-2电流密度和78mV/decTafel斜率下,在10mAcm-2电流密度下表现出电化学水氧化。一对相反取向的羧酸有助于过渡金属离子的后金属化,以设计异双金属材料。值得注意的是,Ni2接枝的三重氧化还原复合物的过电位降低至270mV,塔菲尔斜率比母体MOF下降两倍,在报告最好的值中排名,并优于大多数相关催化剂。重要的是,周转频率和电荷转移电阻显示35.5和1.4倍的热潮,分别,由于协同的Co(II)-Ni(II)偶联,具有更高的时间电位稳定性并增加了活性表面积。COOH和富氮部分的同时存在使该氢键键合的MOF在无溶剂的温和条件下作为可循环的脱缩醛-Knoevenagel反应的酸碱协同催化剂,产品收率>99%。除了对照实验,通过比较分子剪切方法衍生的结构相似的非官能化MOF的性能,验证了─COOH作为氢键供体位点在底物活化中的独特作用,和异双金属复合材料。为了最好的串联Knoevenagel冷凝,较大尺寸的缩醛表现出低的α产率,β-不饱和二氰化物,并证明了孔拟合介导的尺寸选择性。
    A fish-bone-shaped and thermochemically stable 2D metal-organic framework (MOF) with multimodal active center-decked pore-wall is devised. Redox-active [Co2(COO)4] node and thiazolo[5,4-d]thiazole functionalization benefit this mixed-ligand MOF exhibiting electrochemical water oxidation with 375 mV overpotential at 10 mA cm-2 current density and 78 mV per dec Tafel slope in alkaline medium. Pair of oppositely oriented carboxylic acids aids postmetalation with transition metal ions to engineer heterobimetallic materials. Notably, overpotential of Ni2+ grafted triple-redox composite reduces to 270 mV with twofold declined Tafel slope than the parent MOF, ranking among the best-reported values, and outperforming majority of related catalysts. Significantly, turnover frequency and charge transfer resistance display 35.5 and 1.4-fold upsurge, respectively, with much uplifted chronopotentiometric stability and increase active surface area owing to synergistic Co(II)-Ni(II) coupling. The simultaneous presence of ─COOH and nitrogen-rich moieties renders this hydrogen-bonded MOF as acid-base synergistic catalyst for recyclable deacetalization-Knoevenagel reaction with >99% product yield under solvent-free mild condition. Besides control experiments, unique role of ─COOH as hydrogen-bond donor site in substrate activation is validated from comparing the performances of molecular-shearing approach-derived structurally similar unfunctionalized MOF, and the heterobimetallic composite. To the best of tandem Knoevenagel condensation, larger-sized acetal exhibits poor yield of α,β-unsaturated dicyanides, and demonstrates pore-fitting-mediated size-selectivity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    金属负载型催化剂中的氢溢出可以大大提高电催化加氢性能并降低能耗。然而,其基本机制,特别是在金属-金属界面,仍在进一步探索,妨碍相关催化剂设计。这里,从理论上讲,氢在两种不同金属上的吸附自由能差很大(|ΔGH-金属(i)-ΔGH-金属(ii)|)会引起金属之间氢溢出的高动力学势垒。最小化它们的d带中心(Δεd)的差异应减少|ΔGH-金属(i)-ΔGH-金属(ii)|,降低氢溢出的动力学屏障,以改善电催化加氢。我们使用具有最小Δεd的铜负载钌-铂合金证明了这一概念,提供了创纪录的电催化硝酸盐加氢性能,氨产生速率为3.45±0.12mmolh-1cm-2,法拉第效率为99.8±0.2%,在21.4kWhkgamm-1的低能耗下。使用这些催化剂,我们进一步实现了连续的氨和甲酸生产,具有创纪录的高利润空间。
    Hydrogen spillover in metal-supported catalysts can largely enhance electrocatalytic hydrogenation performance and reduce energy consumption. However, its fundamental mechanism, especially at the metal-metal interface, remains further explored, impeding relevant catalyst design. Here, we theoretically profile that a large free energy difference in hydrogen adsorption on two different metals (|ΔGH-metal(i)-ΔGH-metal(ii)|) induces a high kinetic barrier to hydrogen spillover between the metals. Minimizing the difference in their d-band centers (Δϵd) should reduce |ΔGH-metal(i)-ΔGH-metal(ii)|, lowering the kinetic barrier to hydrogen spillover for improved electrocatalytic hydrogenation. We demonstrated this concept using copper-supported ruthenium-platinum alloys with the smallest Δϵd, which delivered record high electrocatalytic nitrate hydrogenation performance, with ammonia production rate of 3.45±0.12 mmol h-1 cm-2 and Faraday efficiency of 99.8±0.2 %, at low energy consumption of 21.4 kWh kgamm -1. Using these catalysts, we further achieve continuous ammonia and formic acid production with a record high-profit space.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    从NO3-和CO2(UENC)的共电解进行尿素电合成为实现可持续和有效的尿素生产提供了有前途的技术。在这里,双原子合金催化剂(CuPd1Rh1-DAA),将相互孤立的Pd和Rh原子合金化在Cu衬底上,理论上设计和实验证实是一种高活性和选择性的UENC催化剂。结合理论计算和操作光谱表征揭示了Pd1-Cu和Rh1-Cu活性位点通过串联催化机理促进UENC的协同作用,其中Pd1-Cu位点触发早期C-N偶联并促进*CO2NO2-to-*CO2NH步骤,而Rh1-Cu位点促进了随后的*CO2NH2到*COOHNH2的质子化步骤,从而形成尿素。令人印象深刻的是,在流动池中组装的CuPd1Rh1-DAA在-0.5V与RHE相比,具有72.1%的最高尿素法拉第效率和53.2mmolh-1gcat-1的尿素产率,代表了所有报告的UENC催化剂中几乎最高的性能。本文受版权保护。保留所有权利。
    Urea electrosynthesis from co-electrolysis of NO3 - and CO2 (UENC) offers a promising technology for achieving sustainable and efficient urea production. Herein, a diatomic alloy catalyst (CuPd1Rh1-DAA), with mutually isolated Pd and Rh atoms alloyed on Cu substrate, is theoretically designed and experimentally confirmed to be a highly active and selective UENC catalyst. Combining theoretical computations and operando spectroscopic characterizations reveals the synergistic effect of Pd1-Cu and Rh1-Cu active sites to promote the UENC via a tandem catalysis mechanism, where Pd1-Cu site triggers the early C-N coupling and promotes *CO2NO2-to-*CO2NH steps, while Rh1-Cu site facilitates the subsequent protonation step of *CO2NH2 to *COOHNH2 toward the urea formation. Impressively, CuPd1Rh1-DAA assembled in a flow cell presents the highest urea Faradaic efficiency of 72.1% and urea yield rate of 53.2 mmol h-1 gcat -1 at -0.5 V versus RHE, representing nearly the highest performance among all reported UENC catalysts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    铜(Cu)纳米材料是一种独特的电催化剂,用于二氧化碳还原反应(CO2RR)中的高价值多碳生产,在实现碳中和方面拥有巨大潜力。然而,铜纳米材料的相位工程仍然具有挑战性,特别是用于构建非常规相铜基非对称异质结构。在这里,我们报告了Cu在异常相金(Au)纳米棒上的位置选择性生长,获得三种异相fcc-2H-fccAu-Cu异质结构。重要的是,所得的fcc-2H-fccAu-CuJanus纳米结构(JNSs)打破了Cu在Au上的对称生长模式。在电催化CO2RR中,fcc-2H-fccAu-CuJNS在H型和流动池中均表现出优异的性能,乙烯和多碳产品的法拉第效率为55.5%和84.3%,分别。原位表征和理论计算表明,Au-CuJNS中2H-Au和2H-Cu域的共同暴露使CO*吸附构型多样化,并促进CO*溢出和随后的C-C偶联向乙烯生成,同时减少了能量障碍。本文受版权保护。保留所有权利。
    Copper (Cu) nanomaterials are a unique kind of electrocatalysts for high-value multi-carbon production in carbon dioxide reduction reaction (CO2RR), which holds enormous potential in attaining carbon neutrality. However, phase engineering of Cu nanomaterials remains challenging, especially for the construction of unconventional phase Cu-based asymmetric heteronanostructures. Here the site-selective growth of Cu on unusual phase gold (Au) nanorods, obtaining three kinds of heterophase fcc-2H-fcc Au-Cu heteronanostructures is reported. Significantly, the resultant fcc-2H-fcc Au-Cu Janus nanostructures (JNSs) break the symmetric growth mode of Cu on Au. In electrocatalytic CO2RR, the fcc-2H-fcc Au-Cu JNSs exhibit excellent performance in both H-type and flow cells, with Faradaic efficiencies of 55.5% and 84.3% for ethylene and multi-carbon products, respectively. In situ characterizations and theoretical calculations reveal the co-exposure of 2H-Au and 2H-Cu domains in Au-Cu JNSs diversifies the CO* adsorption configurations and promotes the CO* spillover and subsequent C-C coupling toward ethylene generation with reduced energy barriers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    开发了一种Cu/Co串联催化方案,以使用CO2/H2和PMHS(聚甲基氢硅氧烷)作为容易获得且环境友好的氢化物源进行烯烃的加氢甲酰化。该方法是通过两步方法进行的,该方法包括通过氢硅烷进行铜催化的CO2还原,然后用H2和原位形成的CO进行钴促进的加氢甲酰化。优化的三磷氧化物配体,这可能有助于CO的迁移插入,从而为末端和内部烯烃提供中等至优异的产率。这种富含地球的金属催化提供了一种可靠和有效的方式来提供工业中有用的醛,使用硅副产物PMHS作为氢源和可再生CO2作为羰基源。
    A Cu/Co tandem catalysis protocol was developed to conduct the hydroformylation of olefins using CO2/H2 and PMHS (polymethylhydrosiloxane) as a readily available and environmentally friendly hydride source. This methodology was performed via a two-step approach consisting of the copper-catalyzed reduction of CO2 by hydrosilane and subsequent cobalt-promoted hydroformylation with H2 and the in situ formed CO. The optimized triphos oxide ligand, which presumably facilitates the migratory insertion of CO gives moderate to excellent yields for both terminal and internal alkenes. This earth-abundant metal catalysis provides a reliable and efficient way to afford useful aldehydes in industry using silicon by-product PMHS as hydrogen source and renewable CO2 as carbonyl source.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    缺陷位点的构建是产生高活性金属有机骨架(MOFs)催化剂的有效策略之一。然而,传统的合成方法通常具有繁琐的合成步骤和无序的缺陷结构。在这里,提出了一种簇-簇共成核(CCCN)策略,该策略涉及原位引入尺寸匹配的功能多金属氧酸盐(H6P2W18O62,{P2W18})以干预基于簇的MOF(UiO-66)的成核过程,实现暴露缺陷位点的一步诱导,而无需冗余后处理。POM诱导的UiO-66({P2W18}-0.1@UiO-66)对于定义明确的簇缺陷具有经典的reo拓扑结构。此外,通过扫描透射电子显微镜(iDPC-STEM)中的集成微分相位差直接观察到有缺陷的位点以及POM与骨骼簇节点之间的相互作用。由于缺陷位点和POM在同一纳米反应空间中的分子水平接近,{P2W18}-0.1@UiO-66在通过Lewis和Brønsted酸的组合从乙酰丙酸(LA)制备γ-戊内酯(γ-GVL)中表现出有效的串联催化作用,比缺陷型UiO-66高11倍。通过常规配位调制策略形成。CCCN策略适用于不同的POM,并有可能扩展到其他基于集群的MOF,这将为构建多中心协同催化的功能性MOFs开辟新的途径。
    The construction of defective sites is one of the effective strategies to create high-activity Metal-Organic frameworks (MOFs) catalysts. However, traditional synthesis methods usually suffer from cumbersome synthesis steps and disordered defect structures. Herein, a cluster-cluster co-nucleation (CCCN) strategy is presented that involves the in situ introduction of size-matched functional polyoxometalates (H6P2W18O62, {P2W18}) to intervene the nucleation process of cluster-based MOFs (UiO-66), achieving one-step inducement of exposed defective sites without redundant post-processing. POM-induced UiO-66 ({P2W18}-0.1@UiO-66) exhibits a classical reo topology for well-defined cluster defects. Moreover, the defective sites and the interaction between POM and skeletal cluster nodes are directly observed by Integrated Differential Phase Contrast in Scanning Transmission Electron Microscopy (iDPC-STEM). Owing to the molecular-level proximity between defective sites and POM in the same nano-reaction space, {P2W18}-0.1@UiO-66 exhibits efficient tandem catalysis in the preparation of γ-valerolactone (γ-GVL) from laevulinic acid (LA) by the combination of Lewis and Brønsted acids with 11 times higher performance than defective UiO-66 formed by conventional coordination modulation strategy. The CCCN strategy is applicable to different POM and has the potential to be extended to other cluster-based MOFs, which will pave a new way for the construction of functional MOFs with multi-centered synergistic catalysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    高能量密度锂金属电池(LMB)受到电化学动力学不令人满意的反应或扩散屏障的限制。典型的转换型锂硫电池系统例示了动力学挑战。即,在电极表面/内部扩散或反应之前,Li(溶剂)x+在界面处解离以产生分离的Li+,通常是连续Li+“还原”或Li+参与硫转化的先决条件基本步骤,有助于相关的电化学屏障。由于理想的原子效率(100at%),单原子催化剂(SAC)已获得关注,用于LMB,以解决由五种类型的屏障限制过程引起的问题,包括多硫化物/Li2S转化,Li(溶剂)x+去溶剂化,和Li0成核/扩散。从这个角度来看,从界面到电极内部,介绍和分析了包括去溶剂化和反应或电镀在内的串联反应以及相应的催化行为。同时,讨论了高效SAC克服特定能量障碍以增强催化电化学的主要机理。最后,介绍了电池中高效原子级催化剂的未来发展。
    High-energy-density lithium metal batteries (LMBs) are limited by reaction or diffusion barriers with dissatisfactory electrochemical kinetics. Typical conversion-type lithium sulfur battery systems exemplify the kinetic challenges. Namely, before diffusing or reacting in the electrode surface/interior, the Li(solvent)x + dissociation at the interface to produce isolated Li+, is usually a prerequisite fundamental step either for successive Li+ \"reduction\" or for Li+ to participate in the sulfur conversions, contributing to the related electrochemical barriers. Thanks to the ideal atomic efficiency (100 at%), single atom catalysts (SACs) have gained attention for use in LMBs toward resolving the issues caused by the five types of barrier-restricted processes, including polysulfide/Li2S conversions, Li(solvent)x + desolvation, and Li0 nucleation/diffusion. In this perspective, the tandem reactions including desolvation and reaction or plating and corresponding catalysis behaviors are introduced and analyzed from interface to electrode interior. Meanwhile, the principal mechanisms of highly efficient SACs in overcoming specific energy barriers to reinforce the catalytic electrochemistry are discussed. Lastly, the future development of high-efficiency atomic-level catalysts in batteries is presented.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    使用配位驱动的自组装设计和合成多面体一直是合成化学家感兴趣的研究领域。金属有机多面体是一类复杂的分子结构,由于其不同的结构和潜在的应用,在文献中引起了极大的关注。特此,我们报道了Cu-MOP,在室温下使用2,6-二甲基吡啶-3,5-二羧酸和乙酸铜构建的双功能金属有机立方体。Lewis碱性吡啶基和Lewis酸性铜位点的存在都为串联的一锅脱缩醛-Knoevenagel/Henry反应赋予了Cu-MOP催化活性。研究了溶剂体系和持续时间对反应收率的影响,结果说明了这些金属有机立方面体的潜力,也称为纳米球在催化中的应用。
    The design and synthesis of polyhedra using coordination-driven self-assembly has been an intriguing research area for synthetic chemists. Metal-organic polyhedra are a class of intricate molecular architectures that have garnered significant attention in the literature due to their diverse structures and potential applications. Hereby, we report Cu-MOP, a bifunctional metal-organic cuboctahedra built using 2,6-dimethylpyridine-3,5-dicarboxylic acid and copper acetate at room temperature. The presence of both Lewis basic pyridine groups and Lewis acidic copper sites imparts catalytic activity to Cu-MOP for the tandem one-pot deacetalization-Knoevenagel/Henry reactions. The effect of solvent system and time duration on the yields of the reactions was studied, and the results illustrate the promising potential of these metal-organic cuboctahedra, also known as nanoballs for applications in catalysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号