tRNA modification

tRNA 修饰
  • 文章类型: Journal Article
    所有的硫转移途径通常都有一个l-半胱氨酸脱硫酶作为共同的初始硫动员酶,作为细胞中许多含硫生物分子的生物合成的硫供体。在大肠杆菌中,内务l-半胱氨酸脱硫酶IscS有几个相互作用的伙伴,它们结合在蛋白质的不同位点。到目前为止,ISCU的交互站点,Fdx,CyaY,和参与铁-硫(Fe-S)簇组装的IscX已被映射,除了Tusa,这是钼辅因子生物合成和mnm5s2U34tRNA修饰所必需的,还有ThiI,参与硫胺素生物合成和s4U8tRNA修饰。先前的研究预测硫受体蛋白一次与IscS结合。大肠杆菌TusA有,然而,被建议参与Fe-S团簇组装,因为在ΔtusA突变体中检测到较少的Fe-S簇。Fe-S团簇含量降低的基础未知。在这项工作中,我们研究了TusA在铁硫簇组装和铁稳态中的作用。我们表明,没有TusA会减少毛皮的翻译,从而导致多效性细胞效应,我们在这项研究中详细剖析。重要铁硫簇是进化上古老的假体群。铁摄取调节剂在控制细菌中铁稳态基因的表达中起主要作用。我们表明,ΔtusA突变体在Fe-S簇的组装中受损并积累铁。Tusa,因此,减少毛皮mRNA翻译,导致多效性细胞效应。
    All sulfur transfer pathways have generally a l-cysteine desulfurase as an initial sulfur-mobilizing enzyme in common, which serves as a sulfur donor for the biosynthesis of numerous sulfur-containing biomolecules in the cell. In Escherichia coli, the housekeeping l-cysteine desulfurase IscS has several interaction partners, which bind at different sites of the protein. So far, the interaction sites of IscU, Fdx, CyaY, and IscX involved in iron-sulfur (Fe-S) cluster assembly have been mapped, in addition to TusA, which is required for molybdenum cofactor biosynthesis and mnm5s2U34 tRNA modifications, and ThiI, which is involved in thiamine biosynthesis and s4U8 tRNA modifications. Previous studies predicted that the sulfur acceptor proteins bind to IscS one at a time. E. coli TusA has, however, been suggested to be involved in Fe-S cluster assembly, as fewer Fe-S clusters were detected in a ∆tusA mutant. The basis for this reduction in Fe-S cluster content is unknown. In this work, we investigated the role of TusA in iron-sulfur cluster assembly and iron homeostasis. We show that the absence of TusA reduces the translation of fur, thereby leading to pleiotropic cellular effects, which we dissect in detail in this study.IMPORTANCEIron-sulfur clusters are evolutionarily ancient prosthetic groups. The ferric uptake regulator plays a major role in controlling the expression of iron homeostasis genes in bacteria. We show that a ∆tusA mutant is impaired in the assembly of Fe-S clusters and accumulates iron. TusA, therefore, reduces fur mRNA translation leading to pleiotropic cellular effects.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    小桑德斯等人。在疟原虫中发现了青蒿素抗性的新方面,其中寄生虫使用了以前未充分开发的应激反应机制。通过改变对tRNA的表观基因组修饰,改变的翻译模式使抗性细胞适应于进入静止样状态,这为寄生虫提供了许多药物的逃避。
    Small-Saunders et al. uncovered a new facet of artemisinin resistance in Plasmodium in which parasites use a previously underexplored arm of stress response mechanisms. Through altered epitranscriptomic modifications on tRNA, changed translation patterns adapt resistant cells to facilitate entry into a quiescent-like state which provides the parasite an escape from many drugs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    几乎所有的延伸分子tRNA(转移RNA)都在T臂中含有5-甲基尿苷54和假尿苷55,由酶TrmA和TruB产生,分别,在大肠杆菌中。TrmA和TruB都是tRNA分子伴侣,缺乏trmA或truB的菌株优于野生型。这里,我们研究了TrmA和TruB如何促进细胞健康。大肠杆菌中trmA和truB的缺失导致氨基酰化的整体降低并改变其他tRNA修饰如acp3U47。虽然在ΔtrmA和ΔtruB菌株中总体蛋白质合成不受影响,密码子子集的翻译明显受损。因此,我们观察到许多特定蛋白质的翻译表达降低,要么用这些密码子的高频率编码,要么是大蛋白质。由此产生的蛋白质组变化与特定的生长表型无关,但是根据一般的蛋白质合成影响,删除trmA和truB会损害整体细胞适应性。总之,我们证明了tRNAT臂的通用修饰通过增强tRNA成熟对整体tRNA功能至关重要,tRNA氨基酰化,翻译,从而改善细胞适应性,而不考虑生长条件,这解释了trmA和truB的保守性。
    Almost all elongator tRNAs (Transfer RNAs) harbor 5-methyluridine 54 and pseudouridine 55 in the T arm, generated by the enzymes TrmA and TruB, respectively, in Escherichia coli. TrmA and TruB both act as tRNA chaperones, and strains lacking trmA or truB are outcompeted by wild type. Here, we investigate how TrmA and TruB contribute to cellular fitness. Deletion of trmA and truB in E. coli causes a global decrease in aminoacylation and alters other tRNA modifications such as acp3U47. While overall protein synthesis is not affected in ΔtrmA and ΔtruB strains, the translation of a subset of codons is significantly impaired. As a consequence, we observe translationally reduced expression of many specific proteins, that are either encoded with a high frequency of these codons or that are large proteins. The resulting proteome changes are not related to a specific growth phenotype, but overall cellular fitness is impaired upon deleting trmA and truB in accordance with a general protein synthesis impact. In conclusion, we demonstrate that universal modifications of the tRNA T arm are critical for global tRNA function by enhancing tRNA maturation, tRNA aminoacylation, and translation, thereby improving cellular fitness irrespective of the growth conditions which explains the conservation of trmA and truB.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在反密码子的第34位具有真正的腺苷残基的tRNA的体内密码子解码偏好,摇摆位置,在很大程度上是未经探索的,因为很少有未修饰的A34tRNA基因存在于生命的三个域中。扩大的摆动规则表明,未修饰的腺苷与尿嘧啶最强烈地配对,适度地与胞嘧啶,与鸟苷和腺苷弱。肌苷,修饰的腺苷,另一方面,与尿嘧啶和胞嘧啶以及较小程度的腺苷强烈配对。正交对定向有义密码子重新分配实验提供了一种用于询问A34tRNA的翻译活性的工具,因为引入的tRNA可以用任何反密码子进行工程改造。我们的基于荧光的筛选利用了超折叠GFP位置66处酪氨酸的绝对需求来形成自催化荧光团。引入的正交tRNA与内源性翻译机制竞争以响应通常在遗传密码中赋予另一种含义的密码子而掺入酪氨酸。我们评估了16种可能的具有A34反密码子的正交tRNA中的15种的密码子重新分配效率。我们检查了来自每个逆转录的tRNA的cDNA的Sanger测序色谱图,以获得肌苷修饰的证据。尽管有几个A34tRNA解码密切相关的C末端密码子,仅在三个物种中检测到部分肌苷修饰。这些实验使用具有单个连接的氨基酸的单个tRNA体来询问不同反密码子在体内大肠杆菌翻译背景中的行为,并且极大地扩展了A34tRNA在翻译中的体内功能的实验测量的集合。在大多数情况下,未修饰的A34tRNA基本上只与U3密码子配对,正如原始摆动规则所暗示的。在前两个密码子位置有GC对的情况下,未修饰的A34tRNA解码C-和G-末端密码子以及预期的U-末端密码子。这些观察结果支持“三分之二”和“强弱”密码子假说。
    The in vivo codon decoding preferences of tRNAs with an authentic adenosine residue at position 34 of the anticodon, the wobble position, are largely unexplored because very few unmodified A34 tRNA genes exist across the three domains of life. The expanded wobble rules suggest that unmodified adenosine pairs most strongly with uracil, modestly with cytosine, and weakly with guanosine and adenosine. Inosine, a modified adenosine, on the other hand, pairs strongly with both uracil and cytosine and to a lesser extent adenosine. Orthogonal pair directed sense codon reassignment experiments offer a tool with which to interrogate the translational activity of A34 tRNAs because the introduced tRNA can be engineered with any anticodon. Our fluorescence-based screen utilizes the absolute requirement of tyrosine at position 66 of superfolder GFP for autocatalytic fluorophore formation. The introduced orthogonal tRNA competes with the endogenous translation machinery to incorporate tyrosine in response to a codon typically assigned another meaning in the genetic code. We evaluated the codon reassignment efficiencies of 15 of the 16 possible orthogonal tRNAs with A34 anticodons. We examined the Sanger sequencing chromatograms for cDNAs from each of the reverse transcribed tRNAs for evidence of inosine modification. Despite several A34 tRNAs decoding closely-related C-ending codons, partial inosine modification was detected for only three species. These experiments employ a single tRNA body with a single attached amino acid to interrogate the behavior of different anticodons in the background of in vivo E. coli translation and greatly expand the set of experimental measurements of the in vivo function of A34 tRNAs in translation. For the most part, unmodified A34 tRNAs largely pair with only U3 codons as the original wobble rules suggest. In instances with GC pairs in the first two codon positions, unmodified A34 tRNAs decode the C- and G-ending codons as well as the expected U-ending codon. These observations support the \"two-out-of-three\" and \"strong and weak\" codon hypotheses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    U47磷酸化(Up47)是最近发现的一种新型tRNA修饰;它可以赋予tRNA热稳定性和核酸酶抗性。U47磷酸化由古细菌RNA激酶(Ark1)以ATP依赖性方式催化。然而,Ark1结合tRNA和/或ATP的结构基础尚不清楚。这里,我们报告表达,净化,和来自G.acetivorans(GaArk1)的Ark1的结晶研究。除了Apo形式的结构,还以原子分辨率确定了一个GaArk1-ATP复合物,并揭示了GaArk1结合ATP的详细基础。GaArk1-ATP复合物代表Ark1蛋白的唯一ATP结合结构。大多数ATP结合残基是保守的,这表明GaArk1和同源蛋白在ATP结合中具有相似的机制。序列和结构分析进一步表明,内源性鸟苷只会抑制某些Ark1蛋白的活性,例如来自T.Kodakarensis的Ark1。
    U47 phosphorylation (Up47) is a novel tRNA modification discovered recently; it can confer thermal stability and nuclease resistance to tRNAs. U47 phosphorylation is catalyzed by Archaeal RNA kinase (Ark1) in an ATP-dependent manner. However, the structural basis for tRNA and/or ATP binding by Ark1 is unclear. Here, we report the expression, purification, and crystallization studies of Ark1 from G. acetivorans (GaArk1). In addition to the Apo-form structure, one GaArk1-ATP complex was also determined in atomic resolution and revealed the detailed basis for ATP binding by GaArk1. The GaArk1-ATP complex represents the only ATP-bound structure of the Ark1 protein. The majority of the ATP-binding residues are conserved, suggesting that GaArk1 and the homologous proteins share similar mechanism in ATP binding. Sequence and structural analysis further indicated that endogenous guanosine will only inhibit the activities of certain Ark1 proteins, such as Ark1 from T. kodakarensis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    tRNA修饰在确保准确的密码子识别和优化翻译水平中起着至关重要的作用。虽然这些修饰在真核细胞中对维持细胞稳态和生理功能的重要性已经确立,它们在细菌细胞中的生理作用,特别是在发病机制中,相对未被探索。TusDCB蛋白复合物,在像大肠杆菌一样的γ-蛋白细菌中保守,参与特定tRNA的硫修饰。本研究主要探讨TusDCB在尿路致病性大肠杆菌(UPEC)毒力中的作用,引起尿路感染的细菌。研究结果表明,TusDCB对于UPEC毒力因子的最佳生产至关重要,包括1型菌毛和鞭毛,影响细菌在膀胱上皮细胞中聚集的能力。tusDCB的缺失导致对尿路感染小鼠的毒力降低。此外,缺乏硫转移活性的突变体TusDCB和tus-和mnmA突变体揭示了TusDCB的硫转移活性对UPEC致病性的不可或缺性。该研究将其相关性扩展到高致病性,多重耐药菌株,其中tusDCB缺失减少了毒力相关的细菌聚集。这些见解不仅加深了我们对tRNA硫修饰与细菌发病机理之间相互作用的理解,而且还强调了TusDCB作为对常规抗微生物剂耐药的UPEC菌株的潜在治疗靶标。
    tRNA modifications play a crucial role in ensuring accurate codon recognition and optimizing translation levels. While the significance of these modifications in eukaryotic cells for maintaining cellular homeostasis and physiological functions is well-established, their physiological roles in bacterial cells, particularly in pathogenesis, remain relatively unexplored. The TusDCB protein complex, conserved in γ-proteobacteria like Escherichia coli, is involved in sulfur modification of specific tRNAs. This study focused on the role of TusDCB in the virulence of uropathogenic E. coli (UPEC), a bacterium causing urinary tract infections. The findings indicate that TusDCB is essential for optimal production of UPEC\'s virulence factors, including type 1 fimbriae and flagellum, impacting the bacterium\'s ability to aggregate in bladder epithelial cells. Deletion of tusDCB resulted in decreased virulence against urinary tract infection mice. Moreover, mutant TusDCB lacking sulfur transfer activity and tusE- and mnmA mutants revealed the indispensability of TusDCB\'s sulfur transfer activity for UPEC pathogenicity. The study extends its relevance to highly pathogenic, multidrug-resistant strains, where tusDCB deletion reduced virulence-associated bacterial aggregation. These insights not only deepen our understanding of the interplay between tRNA sulfur modification and bacterial pathogenesis but also highlight TusDCB as a potential therapeutic target against UPEC strains resistant to conventional antimicrobial agents.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    tRNA修饰在维持生命所有领域的翻译准确性中起着重要作用。tRNA修饰机制的中断,尤其是反密码子茎环,可以致命的许多细菌,并导致广泛的表型面包师的酵母。关于tRNA修饰在宿主-病原体相互作用中的功能知之甚少,快速变化的环境和压力需要快速适应。我们发现两种密切相关的人类真菌病原体,高致病性白色念珠菌及其致病性低的姐妹物种,都柏林念珠菌,tRNA修饰酶的功能不同。这种酶,Hma1对两种真菌在菌丝形态中生长的能力表现出物种特异性影响,这是它们毒力潜力的核心。我们显示Hma1具有tRNA-苏酰基氨基甲酰基腺苷脱水酶活性,它的缺失改变了核糖体的占用,尤其是在37°C-人体宿主的体温下。白色念珠菌HMA1缺失突变体还显示出粘附和侵入人上皮细胞的缺陷,并在真菌感染模型中显示出降低的毒力。这将tRNA修饰与人类最重要的真菌病原体之一的宿主诱导的成丝和毒力联系起来。重要真菌感染在世界范围内呈上升趋势,它们对人类生命和健康的全球负担经常被低估。其中,人类共生和机会病原体,白色念珠菌,是严重感染的主要病原体之一。其毒力与其改变酵母至菌丝形态的能力密切相关。这里,这种能力首次与我们的知识有关,与tRNA的修饰和翻译效率有关。一种tRNA修饰酶,Hma1在白色念珠菌及其入侵宿主的能力中起着特定的作用。这为真菌毒力计划增加了迄今为止未知的调节层,并提供了新的潜在治疗靶标来对抗真菌感染。
    tRNA modifications play important roles in maintaining translation accuracy in all domains of life. Disruptions in the tRNA modification machinery, especially of the anticodon stem loop, can be lethal for many bacteria and lead to a broad range of phenotypes in baker\'s yeast. Very little is known about the function of tRNA modifications in host-pathogen interactions, where rapidly changing environments and stresses require fast adaptations. We found that two closely related fungal pathogens of humans, the highly pathogenic Candida albicans and its much less pathogenic sister species, Candida dubliniensis, differ in the function of a tRNA-modifying enzyme. This enzyme, Hma1, exhibits species-specific effects on the ability of the two fungi to grow in the hypha morphology, which is central to their virulence potential. We show that Hma1 has tRNA-threonylcarbamoyladenosine dehydratase activity, and its deletion alters ribosome occupancy, especially at 37°C-the body temperature of the human host. A C. albicans HMA1 deletion mutant also shows defects in adhesion to and invasion into human epithelial cells and shows reduced virulence in a fungal infection model. This links tRNA modifications to host-induced filamentation and virulence of one of the most important fungal pathogens of humans.IMPORTANCEFungal infections are on the rise worldwide, and their global burden on human life and health is frequently underestimated. Among them, the human commensal and opportunistic pathogen, Candida albicans, is one of the major causative agents of severe infections. Its virulence is closely linked to its ability to change morphologies from yeasts to hyphae. Here, this ability is linked-to our knowledge for the first time-to modifications of tRNA and translational efficiency. One tRNA-modifying enzyme, Hma1, plays a specific role in C. albicans and its ability to invade the host. This adds a so-far unknown layer of regulation to the fungal virulence program and offers new potential therapeutic targets to fight fungal infections.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    解码分裂密码子的tRNA的摆动碱基通常被严重修饰。在细菌中,tRNAGlu,Gln,Asp中含有多种xnm5s2U衍生物。这些修饰的合成途径是复杂的,并且仅在少数生物体中得到充分阐明。包括革兰氏阴性大肠杆菌K12模型。尽管mnm5s2U修饰无处不在,基因组分析显示mnmC直系同源基因的缺失,表明存在将cmnm5s2U转化为mnm5s2U的替代生物合成方案。结合比较基因组学和遗传学研究,发现激进Sam超家族的YtqA亚组成员参与了枯草芽孢杆菌和变形链球菌中mnm5s2U的合成。这种蛋白质,更名为MnmL,在操纵子中编码,最近发现的MnmM甲基化酶参与将途径中间体nm5s2U甲基化为枯草芽孢杆菌的mnm5s2U。对变形链球菌和肺炎链球菌的tRNA修饰的分析显示,生长条件和遗传背景由于尚未理解的调节环影响途径中间体的比率。MnmLM途径在细菌树上广泛存在,有一些门,比如芽孢杆菌,完全依靠这两种酶。尽管这些新发现的组件的机械细节尚未完全解决,融合蛋白的出现,生物合成成分的交替排列,和生物合成分支的丧失提供了生物合成多样性的实例,以在自然界中保留保守的tRNA修饰。重要性在摆动碱基位置的几种tRNA中发现的xnm5s2U修饰在细菌中普遍存在,它们在解码效率和准确性中起重要作用。这项工作确定了一种新型酶(MnmL),该酶是非常通用的自由基SAM超家族的一个亚组的成员,并且参与了几种革兰氏阳性细菌中mnm5s2U的合成,包括人类病原体。这是在tRNA修饰合成领域中的非直系同源置换的另一个新例子,显示不同的解决方案如何进化以保留U34tRNA修饰。
    The wobble bases of tRNAs that decode split codons are often heavily modified. In bacteria, tRNAGlu, Gln, Asp contains a variety of xnm5s2U derivatives. The synthesis pathway for these modifications is complex and fully elucidated only in a handful of organisms, including the Gram-negative Escherichia coli K12 model. Despite the ubiquitous presence of mnm5s2U modification, genomic analysis shows the absence of mnmC orthologous genes, suggesting the occurrence of alternate biosynthetic schemes for the conversion of cmnm5s2U to mnm5s2U. Using a combination of comparative genomics and genetic studies, a member of the YtqA subgroup of the radical Sam superfamily was found to be involved in the synthesis of mnm5s2U in both Bacillus subtilis and Streptococcus mutans. This protein, renamed MnmL, is encoded in an operon with the recently discovered MnmM methylase involved in the methylation of the pathway intermediate nm5s2U into mnm5s2U in B. subtilis. Analysis of tRNA modifications of both S. mutans and Streptococcus pneumoniae shows that growth conditions and genetic backgrounds influence the ratios of pathway intermediates owing to regulatory loops that are not yet understood. The MnmLM pathway is widespread along the bacterial tree, with some phyla, such as Bacilli, relying exclusively on these two enzymes. Although mechanistic details of these newly discovered components are not fully resolved, the occurrence of fusion proteins, alternate arrangements of biosynthetic components, and loss of biosynthetic branches provide examples of biosynthetic diversity to retain a conserved tRNA modification in Nature.IMPORTANCEThe xnm5s2U modifications found in several tRNAs at the wobble base position are widespread in bacteria where they have an important role in decoding efficiency and accuracy. This work identifies a novel enzyme (MnmL) that is a member of a subgroup of the very versatile radical SAM superfamily and is involved in the synthesis of mnm5s2U in several Gram-positive bacteria, including human pathogens. This is another novel example of a non-orthologous displacement in the field of tRNA modification synthesis, showing how different solutions evolve to retain U34 tRNA modifications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    转移RNA(tRNA)修饰在维持翻译保真度和效率方面发挥着至关重要的作用。它们可能在应激反应和毒力中起调节元件的作用。尽管他们的关键作用,对tRNA修饰及其相关合成基因的全面定位仍然有限,主要关注自由生活的细菌。在这项研究中,我们采用了多学科的方法,结合比较基因组学,质谱,和下一代测序,预测负责两种细胞内病原体-休斯顿巴尔通体I和图卢兹巴尔通体tRNA成熟的tRNA修饰基因集,是猫抓病和战壕热的病原体,分别。这一分析提出了挑战,特别是因为宿主的RNA污染,这是一个潜在的错误来源。然而,我们的方法预测了26个基因负责合成23个不同的tRNA修饰在B.henselae和22个基因与23个修饰相关。值得注意的是,类似于其他细胞内和共生细菌,两个巴尔通体物种都经历了tRNA修饰基因的大量减少,主要是通过简化34和37位的超修饰。巴尔通体表现出额外的四个修饰的损失,这些与基因衰变的例子有关,提供还原进化的快照。
    Transfer RNA (tRNA) modifications play a crucial role in maintaining translational fidelity and efficiency, and they may function as regulatory elements in stress response and virulence. Despite their pivotal roles, a comprehensive mapping of tRNA modifications and their associated synthesis genes is still limited, with a predominant focus on free-living bacteria. In this study, we employed a multidisciplinary approach, incorporating comparative genomics, mass spectrometry, and next-generation sequencing, to predict the set of tRNA modification genes responsible for tRNA maturation in two intracellular pathogens-Bartonella henselae Houston I and Bartonella quintana Toulouse, which are causative agents of cat-scratch disease and trench fever, respectively. This analysis presented challenges, particularly because of host RNA contamination, which served as a potential source of error. However, our approach predicted 26 genes responsible for synthesizing 23 distinct tRNA modifications in B. henselae and 22 genes associated with 23 modifications in B. quintana. Notably, akin to other intracellular and symbiotic bacteria, both Bartonella species have undergone substantial reductions in tRNA modification genes, mostly by simplifying the hypermodifications present at positions 34 and 37. Bartonella quintana exhibited the additional loss of four modifications and these were linked to examples of gene decay, providing snapshots of reductive evolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    RNA修饰对tRNA功能有重大影响,反密码子环中的修饰有助于翻译保真度,而tRNA核心中的修饰会影响结构稳定性。在细菌中,tRNA修饰对于响应应激和调节毒力因子的表达至关重要。尽管tRNA修饰在一些模型生物中得到了很好的表征,我们对人类病原体中tRNA修饰的了解,比如铜绿假单胞菌,仍然有限。在这里,我们利用两种正交方法来构建大肠杆菌中tRNA修饰的参考景观,这使我们能够在铜绿假单胞菌中鉴定出类似的修饰。我们的分析揭示了两种生物之间的高度保守性,同时还揭示了铜绿假单胞菌tRNA中不存在于大肠杆菌中的tRNA修饰的潜在位点。这些位点之一的突变特征,tRNAGln1(UUG)的位置46依赖于TapT的铜绿假单胞菌同源物,负责3-(3-氨基-3-羧基丙基)尿苷(acp3U)修饰的酶。确定哪些修饰存在于不同的tRNA上,将揭示受不同的tRNA修饰酶影响的途径。其中一些在确定毒力和致病性方面发挥作用。
    RNA modifications have a substantial impact on tRNA function, with modifications in the anticodon loop contributing to translational fidelity and modifications in the tRNA core impacting structural stability. In bacteria, tRNA modifications are crucial for responding to stress and regulating the expression of virulence factors. Although tRNA modifications are well-characterized in a few model organisms, our knowledge of tRNA modifications in human pathogens, such as Pseudomonas aeruginosa, remains limited. Here we leveraged two orthogonal approaches to build a reference landscape of tRNA modifications in E. coli, which enabled us to identify similar modifications in P. aeruginosa. Our analysis revealed a substantial degree of conservation between the two organisms, while also uncovering potential sites of tRNA modification in P. aeruginosa tRNAs that are not present in E. coli. The mutational signature at one of these sites, position 46 of tRNAGln1(UUG) is dependent on the P. aeruginosa homolog of TapT, the enzyme responsible for the 3-(3-amino-3-carboxypropyl) uridine (acp3U) modification. Identifying which modifications are present on different tRNAs will uncover the pathways impacted by the different tRNA modifying enzymes, some of which play roles in determining virulence and pathogenicity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号