tRNA

tRNA
  • 文章类型: Journal Article
    细菌肽基tRNA水解酶(Pth)或Pth1作为关键酶出现,通过催化肽基-tRNA分子释放肽基部分和维持特定tRNA的游离库,参与维持细胞稳态。这种酶对细菌细胞和各种细菌感染的新兴药物靶标至关重要。了解细菌Pth的酶促机制和结构复杂性对于设计新疗法以对抗抗生素耐药性至关重要。这篇综述全面分析了Pth在细菌生理学中的多方面作用,阐明其作为潜在药物靶标的重要性。本文深入研究了Pth的各种功能,包括参与核糖体拯救,在细菌系统中维持一个自由的tRNA池,翻译保真度的规定,和细菌系统内的应激反应途径。此外,它还探索了细菌Pth的可药用性,强调其作为抗菌剂靶标的前景,并强调与开发针对该酶的特异性抑制剂相关的挑战。结构阐明是揭示Pth的催化机理和底物识别的基石。这篇综述概括了通过各种生物物理技术获得的Pth的当前结构见解,如X射线晶体学和核磁共振光谱,提供对酶的结构和构象动力学的详细了解。此外,生物物理方面,包括它与配体的相互作用,抑制剂,和基底,讨论,阐明细菌Pth功能的分子基础及其在药物设计策略中的潜在用途。通过这篇评论文章,我们的目标是汇集所有有关细菌Pth的现有信息,并强调其在推进创新治疗干预措施和对抗细菌感染方面的潜力。
    Bacterial peptidyl tRNA hydrolase (Pth) or Pth1 emerges as a pivotal enzyme involved in the maintenance of cellular homeostasis by catalyzing the release of peptidyl moieties from peptidyl-tRNA molecules and the maintenance of a free pool of specific tRNAs. This enzyme is vital for bacterial cells and an emerging drug target for various bacterial infections. Understanding the enzymatic mechanisms and structural intricacies of bacterial Pth is pivotal in designing novel therapeutics to combat antibiotic resistance. This review provides a comprehensive analysis of the multifaceted roles of Pth in bacterial physiology, shedding light on its significance as a potential drug target. This article delves into the diverse functions of Pth, encompassing its involvement in ribosome rescue, the maintenance of a free tRNA pool in bacterial systems, the regulation of translation fidelity, and stress response pathways within bacterial systems. Moreover, it also explores the druggability of bacterial Pth, emphasizing its promise as a target for antibacterial agents and highlighting the challenges associated with developing specific inhibitors against this enzyme. Structural elucidation represents a cornerstone in unraveling the catalytic mechanisms and substrate recognition of Pth. This review encapsulates the current structural insights of Pth garnered through various biophysical techniques, such as X-ray crystallography and NMR spectroscopy, providing a detailed understanding of the enzyme\'s architecture and conformational dynamics. Additionally, biophysical aspects, including its interaction with ligands, inhibitors, and substrates, are discussed, elucidating the molecular basis of bacterial Pth\'s function and its potential use in drug design strategies. Through this review article, we aim to put together all the available information on bacterial Pth and emphasize its potential in advancing innovative therapeutic interventions and combating bacterial infections.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    转移RNA(tRNA)在确定翻译的特异性方面至关重要。tRNA基因的突变可导致氨基酸在称为误译的过程中错误掺入新生多肽中。由于误译有不同的影响,根据氨基酸取代的类型,我们的目标是比较不同误译tRNASer变体对果蝇发育的影响,寿命,和行为。我们建立了两条误译航线,一种具有tRNASer变体,该变体在缬氨酸密码子处错误掺入了丝氨酸(V﹤S),另一种在苏氨酸密码子处错误掺入了丝氨酸(TàS)。虽然两种误译的tRNA都增加了发育时间和发育致死性,影响的严重程度因氨基酸替代和性别而异。VØS变体扩展胚胎,幼虫,和蛹发育,而TØS仅延长幼虫和蛹发育。雌性,但不是男性,含有任何一种误译的tRNA,其解剖畸形明显多于对照组。误译女性的寿命也延长,而误译男性的寿命不受影响。此外,来自两性的误译苍蝇随着年龄的增长表现出更好的运动能力,提示迟发性神经变性.因此,尽管误译会造成有害影响,我们证明了误译对寿命和运动等复杂特征也有积极影响。鉴于tRNA变体在人类中的流行,这对人类健康具有重要意义。
    结论:突变的tRNA基因可以引起误译,氨基酸错误地掺入蛋白质中,并与几种人类疾病有关。这项研究调查了两种tRNA变体的作用,这些变体导致苏氨酸转丝氨酸(tsS)或缬氨酸转丝氨酸(vs)取代。两种变体都会导致男女发育迟缓和致死性,并增加女性畸形的患病率。令人惊讶的是,雌蝇的寿命延长,误译雌蝇的运动能力提高。这些结果表明,误译具有正面和负面影响,这取决于tRNA变体和果蝇的性别。
    Transfer RNAs (tRNAs) are vital in determining the specificity of translation. Mutations in tRNA genes can result in the misincorporation of amino acids into nascent polypeptides in a process known as mistranslation. Since mistranslation has different impacts, depending on the type of amino acid substitution, our goal here was to compare the impact of different mistranslating tRNASer variants on fly development, lifespan, and behaviour. We established two mistranslating fly lines, one with a tRNASer variant that misincorporates serine at valine codons (V→S) and the other that misincorporates serine at threonine codons (T→S). While both mistranslating tRNAs increased development time and developmental lethality, the severity of the impacts differed depending on amino acid substitution and sex. The V→S variant extended embryonic, larval, and pupal development whereas the T→S only extended larval and pupal development. Females, but not males, containing either mistranslating tRNA presented with significantly more anatomical deformities than controls. Mistranslating females also experienced extended lifespan whereas mistranslating male lifespan was unaffected. In addition, mistranslating flies from both sexes showed improved locomotion as they aged, suggesting delayed neurodegeneration. Therefore, although mistranslation causes detrimental effects, we demonstrate that mistranslation also has positive effects on complex traits such as lifespan and locomotion. This has important implications for human health given the prevalence of tRNA variants in humans.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    非结构蛋白5(Nsp5)是SARS-CoV-2的主要蛋白酶,其将病毒多蛋白切割成病毒复制所必需的单个多肽。这里,我们显示Nsp5结合并切割人tRNA甲基转移酶1(TRMT1),tRNA中普遍的转录后修饰所需的宿主酶。感染SARS-CoV-2的人细胞表现出TRMT1蛋白水平降低和TRMT1催化的tRNA修饰,与TRMT1裂解和Nsp5失活一致。Nsp5在与SARS-CoV-2多蛋白切割位点的共有序列相匹配的特定位置切割TRMT1,序列内的单个突变抑制TRMT1的Nsp5依赖性蛋白水解。TRMT1裂解片段表现出改变的RNA结合活性,并且不能挽救TRMT1缺陷型人细胞中的tRNA修饰。与野生型人类细胞相比,用SARS-CoV-2感染的TRMT1缺陷的人细胞表现出降低的细胞内病毒RNA水平。这些发现提供了证据,证明Nsp5依赖性TRMT1的裂解和tRNA修饰模式的扰动有助于SARS-CoV-2感染的细胞发病机理。
    导致COVID-19感染的病毒被称为SARS-CoV-2。像所有的病毒一样,SARS-CoV-2带有制造蛋白质和其他分子的指令,这些分子在使病毒繁殖和传播中起着至关重要的作用。病毒无法自己制造这些分子,所以它们感染细胞,诱使它们制造分子并代表它们组装新的病毒颗粒。当SARS-CoV2感染细胞时,宿主细胞被重新编程,以制造含有几种病毒蛋白的链,这些蛋白需要通过病毒酶彼此切断,称为Nsp5,以使蛋白质正常工作。先前的研究表明,Nsp5也可能与称为TRMT1的人类蛋白质相互作用,这有助于在细胞中产生新的蛋白质。然而,尚不清楚Nsp5如何与TRMT1结合或这种相互作用如何影响宿主细胞。张等人。在人体细胞中使用生化和分子技术来研究Nsp5如何与TRMT1相互作用。实验发现,病毒酶将TRMT1切割成无活性的片段,随后被细胞破坏。此外,Nsp5在对应于病毒蛋白切割位点的完全相同的位置切割TRMT1。TRMT1中序列的突变使得Nsp5在切割蛋白质时无效。SARS-CoV-2感染导致细胞内TRMT1水平降低,反过来,导致TRMT1活性下降。与正常人细胞相比,该病毒在无法产生TRMT1的细胞中繁殖较少,表明该病毒在感染早期受益于TRMT1,在稍后将其停用之前。这些发现表明,SARS-CoV-2导致疾病的一种方式是通过降低调节蛋白质产生的人类蛋白质的水平。在未来,张等人的工作。可以为检测SARS-CoV-2和其他类似病毒的感染提供新的标记,并指导对它们进行更有效的治疗。
    Nonstructural protein 5 (Nsp5) is the main protease of SARS-CoV-2 that cleaves viral polyproteins into individual polypeptides necessary for viral replication. Here, we show that Nsp5 binds and cleaves human tRNA methyltransferase 1 (TRMT1), a host enzyme required for a prevalent post-transcriptional modification in tRNAs. Human cells infected with SARS-CoV-2 exhibit a decrease in TRMT1 protein levels and TRMT1-catalyzed tRNA modifications, consistent with TRMT1 cleavage and inactivation by Nsp5. Nsp5 cleaves TRMT1 at a specific position that matches the consensus sequence of SARS-CoV-2 polyprotein cleavage sites, and a single mutation within the sequence inhibits Nsp5-dependent proteolysis of TRMT1. The TRMT1 cleavage fragments exhibit altered RNA binding activity and are unable to rescue tRNA modification in TRMT1-deficient human cells. Compared to wild-type human cells, TRMT1-deficient human cells infected with SARS-CoV-2 exhibit reduced levels of intracellular viral RNA. These findings provide evidence that Nsp5-dependent cleavage of TRMT1 and perturbation of tRNA modification patterns contribute to the cellular pathogenesis of SARS-CoV-2 infection.
    The virus responsible for COVID-19 infections is known as SARS-CoV-2. Like all viruses, SARS-CoV-2 carries instructions to make proteins and other molecules that play essential roles in enabling the virus to multiply and spread. Viruses are unable to make these molecules themselves, so they infect cells and trick them into making the molecules and assembling new virus particles on their behalf instead. When SARS-CoV2 infects cells, the host cells are reprogrammed to make chains containing several virus proteins that need to be severed from each other by a virus enzyme, known as Nsp5, to enable the proteins to work properly. Previous studies suggested that Nsp5 may also interact with a human protein known as TRMT1, which helps with the production of new proteins in cells. However, it was not clear how Nsp5 may bind to TRMT1 or how this interaction may affect the host cell. Zhang et al. used biochemical and molecular techniques in human cells to study how Nsp5 interacts with TRMT1. The experiments found that the virus enzyme cuts TRMT1 into fragments that are inactive and are subsequently destroyed by the cells. Moreover, Nsp5 cuts TRMT1 at exactly the same position corresponding to the cleavage sites of the viral proteins. Mutation of the sequence in TRMT1 renders Nsp5 ineffective at cutting the protein. SARS-CoV-2 infection caused TRMT1 levels to decrease inside the cells, in turn, leading to a drop in TRMT1 activity. The virus multiplied less in cells that were unable to produce TRMT1 compared to normal human cells, suggesting that the virus benefits from TRMT1 early during infection, before inactivating it at a later point. These findings suggest that one way SARS-CoV-2 causes disease is by decreasing the levels of a human protein that regulates protein production. In the future, the work of Zhang et al. may provide new markers for detecting infections of SARS-CoV-2 and other similar viruses and guide efforts to make more effective therapies against them.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    遗传密码由61个编码20个氨基酸的密码子组成。这些密码子由在蛋白质合成过程中与特定密码子结合的转移RNA(tRNA)识别。由于碱基对摆动,所有生物体利用少于全部61种可能的反密码子:与密码子在其第三个核苷酸处具有错配的能力。先前的研究观察到细菌的tRNA池与其各自环境的温度之间存在相关性。然而,目前尚不清楚这些模式是否代表生物适应,以维持不同环境中蛋白质合成的效率和准确性。mRNA翻译的机械数学模型用于基于生物体的tRNA池定量每个密码子的预期伸长率和错误率。对一系列细菌进行比较分析,以量化环境温度对tRNA库进化的影响。我们发现,嗜热菌通常比中温菌或嗜冷菌在其tRNA池中代表更多的反密码子。根据我们的模型,这种增加的多样性预计会导致错觉错误的增加。讨论了这对嗜热菌中蛋白质进化的影响。
    The genetic code consists of 61 codons coding for 20 amino acids. These codons are recognized by transfer RNAs (tRNAs) that bind to specific codons during protein synthesis. All organisms utilize less than all 61 possible anticodons due to base pair wobble: the ability to have a mismatch with a codon at its third nucleotide. Previous studies observed a correlation between the tRNA pool of bacteria and the temperature of their respective environments. However, it is unclear if these patterns represent biological adaptations to maintain the efficiency and accuracy of protein synthesis in different environments. A mechanistic mathematical model of mRNA translation is used to quantify the expected elongation rates and error rate for each codon based on an organism\'s tRNA pool. A comparative analysis across a range of bacteria that accounts for covariance due to shared ancestry is performed to quantify the impact of environmental temperature on the evolution of the tRNA pool. We find that thermophiles generally have more anticodons represented in their tRNA pool than mesophiles or psychrophiles. Based on our model, this increased diversity is expected to lead to increased missense errors. The implications of this for protein evolution in thermophiles are discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Queuosine(Q)是包含GUN反密码子的tRNA摆动碱基的修饰,在解码准确性和效率中起作用。它的合成是复杂的,有多个酶步骤,和几个途径中间体可以挽救。已知用于救助Q前体的仅有的两个转运蛋白家族是QPTR/COG1738和QrtT/QueT。对已知Q合成和挽救基因在人类肠道和口腔微生物群基因组中的分布的分析表明,仍有更多的转运蛋白家族有待发现,并且Q前体交换必须在哺乳动物宿主的结构化微环境中发生。使用物理聚类和基于融合的关联与Q救助基因,鉴定了缺失转运蛋白的候选基因,并通过互补试验在大肠杆菌中对5个进行了实验测试。三个基因编码来自三个不同的Pfam家族的转运蛋白,来自酸性细菌的酰脲通透酶(PF07168),来自短双歧杆菌的溶血素III家族蛋白(PF03006),和来自巴尔通体的主要促进超家族蛋白(PF07690),发现允许在该异源系统中转运preQ0和preQ1。这项工作表明,许多转运家族可以进化来运输Q前体,加强运输可塑性的概念。
    Queuosine (Q) is a modification of the wobble base of tRNA harboring GUN anticodons with roles in decoding accuracy and efficiency. Its synthesis is complex with multiple enzymatic steps, and several pathway intermediates can be salvaged. The only two transporter families known to salvage Q precursors are QPTR/COG1738 and QrtT/QueT. Analyses of the distribution of known Q synthesis and salvage genes in human gut and oral microbiota genomes have suggested that more transporter families remain to be found and that Q precursor exchanges must occur within the structured microenvironments of the mammalian host. Using physical clustering and fusion-based association with Q salvage genes, candidate genes for missing transporters were identified and five were tested experimentally by complementation assays in Escherichia coli. Three genes encoding transporters from three different Pfam families, a ureide permease (PF07168) from Acidobacteriota bacterium, a hemolysin III family protein (PF03006) from Bifidobacterium breve, and a Major Facilitator Superfamily protein (PF07690) from Bartonella henselae, were found to allow the transport of both preQ0 and preQ1 in this heterologous system. This work suggests that many transporter families can evolve to transport Q precursors, reinforcing the concept of transporter plasticity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    抑制物转移RNA(sup-tRNA)因其在治疗由无义突变引起的遗传疾病方面的有希望的治疗特性而受到新的关注。传统上,sup-tRNA是通过用抑制序列替换天然tRNA的反密码子序列而产生的。然而,由于它们复杂的相互作用,考虑其他结构和功能的tRNA特征进行设计和工程可以产生更有效的sup-tRNA治疗。20多年来,遗传密码扩展(GCE)领域创造了丰富的知识,资源,和设计sup-tRNAs的工具。在这个迷你评论中,我们的目标是阐明如何采用现有的知识和策略来开发GCE的sup-tRNA,以加速发现用于医疗选择的有效和特异性sup-tRNA。我们重点介绍了方法和里程碑,并讨论了这些方法如何启发tRNA药物的研究和开发。
    Suppressor transfer RNAs (sup-tRNAs) are receiving renewed attention for their promising therapeutic properties in treating genetic diseases caused by nonsense mutations. Traditionally, sup-tRNAs have been created by replacing the anticodon sequence of native tRNAs with a suppressor sequence. However, due to their complex interactome, considering other structural and functional tRNA features for design and engineering can yield more effective sup-tRNA therapies. For over 2 decades, the field of genetic code expansion (GCE) has created a wealth of knowledge, resources, and tools to engineer sup-tRNAs. In this Mini Review, we aim to shed light on how existing knowledge and strategies to develop sup-tRNAs for GCE can be adopted to accelerate the discovery of efficient and specific sup-tRNAs for medical treatment options. We highlight methods and milestones and discuss how these approaches may enlighten the research and development of tRNA medicines.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    核苷酸修饰在所有类型的RNA中都存在,并且在RNA结构形成和稳定性中起重要作用。修饰的碱基不仅具有将RNA结构集合向期望的功能确认移动的能力。通过改变碱基配对伙伴偏好,它们甚至可能扩大或缩小构象空间,即,RNA分子可以采用的结构的数量和类型。然而,大多数预测RNA二级结构的方法没有提供包括修饰对结果影响的手段。在大量修饰的转移RNA(tRNA)分子的帮助下,本章演示如何使用ViennaRNA包将不同碱基修饰的影响纳入二级结构预测。此处演示的建设性方法可以计算不同水平的改良基础支撑下的最小自由能结构和次优结构。尤其是我们,显示了如何将尿苷异构化为假尿苷(kW)和将尿苷还原为二氢尿苷(D)。
    Nucleotide modifications are occurrent in all types of RNA and play an important role in RNA structure formation and stability. Modified bases not only possess the ability to shift the RNA structure ensemble towards desired functional confirmations. By changes in the base pairing partner preference, they may even enlarge or reduce the conformational space, i.e., the number and types of structures the RNA molecule can adopt. However, most methods to predict RNA secondary structure do not provide the means to include the effect of modifications on the result. With the help of a heavily modified transfer RNA (tRNA) molecule, this chapter demonstrates how to include the effect of different base modifications into secondary structure prediction using the ViennaRNA Package. The constructive approach demonstrated here allows for the calculation of minimum free energy structure and suboptimal structures at different levels of modified base support. In particular we, show how to incorporate the isomerization of uridine to pseudouridine ( Ψ ) and the reduction of uridine to dihydrouridine (D).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Preprint
    误译是氨基酸错误掺入多肽中。误译对多细胞真核生物具有多种作用,并与几种人类疾病有关。在黑腹果蝇中,在脯氨酸密码子处错误掺入丝氨酸的丝氨酸转移RNA(tRNA)(P→S)对雄性和雌性果蝇的影响不同。这种差异背后的机制目前尚不清楚。这里,我们比较了雄性和雌性果蝇对P→S误译的转录反应,以确定构成性别特异性差异的基因和细胞过程。响应P→S误译,雄性和雌性都下调与各种代谢过程相关的基因。男性下调与细胞外基质组织和对负面刺激如受伤相关的基因,而雌性下调有氧呼吸和ATP合成基因。两种性别都上调与配子发生相关的基因,但雌性也会上调细胞周期和DNA修复基因。这些观察到的雄性和雌性果蝇对P→S误译的转录反应差异对于误译对疾病和tRNA治疗的性别特异性影响具有重要意义。
    脯氨酸到丝氨酸的误译对雄性和雌性苍蝇的影响不同,但这种差异背后的机制是未知的。我们对雄性和雌性果蝇进行了转录组学分析,表明误译会破坏两性的代谢途径和配子发生,而DNA修复和细胞周期调节等过程仅在一种性别中受到影响。这是第一个分析误译的性别特异性影响的分析,并为未来的研究提供了有趣的途径,以了解误译如何影响男性和女性。
    Mistranslation is the misincorporation of an amino acid into a polypeptide. Mistranslation has diverse effects on multicellular eukaryotes and is implicated in several human diseases. In Drosophila melanogaster, a serine transfer RNA (tRNA) that misincorporates serine at proline codons (P→S) affects male and female flies differently. The mechanisms behind this discrepancy are currently unknown. Here, we compare the transcriptional response of male and female flies to P→S mistranslation to identify genes and cellular processes that underlie sex-specific differences. Both males and females downregulate genes associated with various metabolic processes in response to P→S mistranslation. Males downregulate genes associated with extracellular matrix organization and response to negative stimuli such as wounding, whereas females downregulate aerobic respiration and ATP synthesis genes. Both sexes upregulate genes associated with gametogenesis, but females also upregulate cell cycle and DNA repair genes. These observed differences in the transcriptional response of male and female flies to P→S mistranslation have important implications for the sex-specific impact of mistranslation on disease and tRNA therapeutics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在工业规模上的重组蛋白表达传统上利用两种微生物主力之一:大肠杆菌或酿酒酵母。此外,旨在在酿酒酵母中表达的酶和蛋白质的随机蛋白质工程通常在酵母中表达之前在大肠杆菌中进行诱变和预筛选。这引入了人为瓶颈,因为细菌表达载体需要通过亚克隆代替酵母表达载体。在酵母中进行最终筛选之前,重新评估了新的文库。这里,我们提出了一种蛋白质表达和工程策略,该策略涉及使用双宿主穿梭载体(pYB-Dual)设计,同时具有强诱导型酵母启动子(pGAL1),和强诱导型细菌启动子(pT7-RNAP),这允许在两个物种中的诱导型蛋白质表达。此外,我们证明,通过将pYB-Dual载体转化到大肠杆菌菌株Rosetta2中,该菌株具有7种稀有tRNA的水平升高,我们可以在酵母和细菌中实现高水平的蛋白质表达,即使使用针对酵母优化的mNeonGreen基因密码子。这种双重表达载体有望在用于酵母中高滴度表达的商业上重要的酶的蛋白质工程中消除瓶颈。
    Recombinant protein expression on an industrial scale traditionally utilizes one of two microbial workhorses: Escherichia coli or Saccharomyces cerevisiae. Additionally, random protein engineering of enzymes and proteins aimed for expression in S. cerevisiae are often mutagenized and pre-screened in E. coli before expression in yeast. This introduces artificial bottlenecks as the bacterial expression vector needs to be substituted for a yeast expression vector via sub-cloning, and the new library re-evaluated before a final screening in yeast. Here, we put forward a protein expression and engineering strategy that involves the use of a dual-host shuttle vector (pYB-Dual) designed with both a strong inducible yeast promoter (pGAL1), and a strong inducible bacterial promoter (pT7-RNAP), which allows for inducible protein expression in both species. Additionally, we demonstrate that by transforming the pYB-Dual vector into the E. coli strain Rosetta 2, which has elevated levels of 7 rare tRNAs, we can achieve high-level protein expression in both yeast and bacteria, even when using a mNeonGreen gene codon optimized for yeast. This dual expression vector is expected to remove bottlenecks during protein engineering of commercially important enzymes destined for high-titer expression in yeast.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    脯氨酸-tRNA合成酶(ProRS),属于氨酰tRNA合成酶家族,负责将特定氨基酸与各自的tRNA配对,分为两种不同的类型:真核生物/古细菌样类型(E型)和原核生物样类型(P型)。值得注意的是,这些类型对其相应的同源tRNA具有特异性。在一个有趣的悖论中,嗜热菌ProRS(TtProRS)与E型ProRS对齐,但选择性地给P型tRNAPro充电,具有细菌特异性受体茎元件G72和A73。这项调查揭示了TtProRS对抑制剂卤夫酮的显著复原力,一种模拟Pro-A76的febrifuggine的合成衍生物,类似于P型ProRS的特征。此外,类似于P型ProRS,TtProRS通过识别受体-茎元件G72/A73以及反密码子元件G35/G36来鉴定其同源tRNA。然而,与P型ProRS相比,它依赖于细菌样基序2环内严格保守的R残基来识别G72/A73,TtProRS通过非保守序列实现这一点,RTR,在其他非相互作用的真核生物样基序2环内。这项研究揭示了通常保守的管家酶适应新型底物的适应能力。
    Prolyl-tRNA synthetase (ProRS), belonging to the family of aminoacyl-tRNA synthetases responsible for pairing specific amino acids with their respective tRNAs, is categorized into two distinct types: the eukaryote/archaeon-like type (E-type) and the prokaryote-like type (P-type). Notably, these types are specific to their corresponding cognate tRNAs. In an intriguing paradox, Thermus thermophilus ProRS (TtProRS) aligns with the E-type ProRS but selectively charges the P-type tRNAPro, featuring the bacterium-specific acceptor-stem elements G72 and A73. This investigation reveals TtProRS\'s notable resilience to the inhibitor halofuginone, a synthetic derivative of febrifugine emulating Pro-A76, resembling the characteristics of the P-type ProRS. Furthermore, akin to the P-type ProRS, TtProRS identifies its cognate tRNA through recognition of the acceptor-stem elements G72/A73, along with the anticodon elements G35/G36. However, in contrast to the P-type ProRS, which relies on a strictly conserved R residue within the bacterium-like motif 2 loop for recognizing G72/A73, TtProRS achieves this through a non-conserved sequence, RTR, within the otherwise non-interacting eukaryote-like motif 2 loop. This investigation sheds light on the adaptive capacity of a typically conserved housekeeping enzyme to accommodate a novel substrate.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号