synthetic designer cells

  • 文章类型: Journal Article
    基于细菌的疗法是癌症治疗的有力策略,然而,由于缺乏可调节的遗传开关来安全地调节治疗药物的局部表达和释放,它们的临床应用受到限制。远程控制技术的快速发展使得能够在时间和空间上精确控制生物过程。我们基于热敏转录阻遏物TlpA39开发了由可激活的整合基因电路介导的治疗活性工程细菌。通过启动子工程和核糖体结合位点筛选,我们以最小的噪声和高的诱导效率实现了超声(US)诱导的工程菌蛋白表达和分泌。具体来说,肿瘤内或静脉内递送,通过US辐射诱导的凋亡蛋白天青蛋白和免疫检查点抑制剂的释放,工程细菌定植肿瘤抑制了肿瘤的生长,在不同的肿瘤小鼠模型中,靶向程序性死亡配体1的纳米抗体。除了开发用于肿瘤治疗的安全和高性能设计细菌,我们的研究说明了一个由超声遗传学控制的治疗平台,该平台可用于基于细菌的精准医学.
    Bacteria-based therapies are powerful strategies for cancer therapy, yet their clinical application is limited by a lack of tunable genetic switches to safely regulate the local expression and release of therapeutic cargoes. Rapid advances in remote-control technologies have enabled precise control of biological processes in time and space. We developed therapeutically active engineered bacteria mediated by a sono-activatable integrated gene circuit based on the thermosensitive transcriptional repressor TlpA39. Through promoter engineering and ribosome binding site screening, we achieved ultrasound (US)-induced protein expression and secretion in engineered bacteria with minimal noise and high induction efficiency. Specifically, delivered either intratumorally or intravenously, engineered bacteria colonizing tumors suppressed tumor growth through US-irradiation-induced release of the apoptotic protein azurin and an immune checkpoint inhibitor, a nanobody targeting programmed death-ligand 1, in different tumor mouse models. Beyond developing safe and high-performance designer bacteria for tumor therapy, our study illustrates a sonogenetics-controlled therapeutic platform that can be harnessed for bacteria-based precision medicine.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    随着移动通信技术的发展,作为远程医疗的重要组成部分,智能手机已被用于即时医疗技术(POCT)。采用多学科设计原理耦合电气工程,软件开发,合成生物学,光遗传学,研究人员开发了一种智能手机控制的半自动治疗诊断系统,该系统以超剂量控制的方式调节糖尿病小鼠的血糖稳态.本章描述了研究人员如何量身定制植入物结构\"HydrogeLED,“它能够携带设计师细胞携带的藻酸盐水凝胶和无线供电的远红光LED。使用糖尿病作为模型疾病,来自HydrogeLED植入物的胰岛素或人胰高血糖素样肽1(shGLP-1)的体内表达不仅可以通过预先设定的ECNU-TeleMed程序来控制,而且还通过定制设计的蓝牙主动血糖仪以半自动和血糖依赖的方式进行。因此,通过智能手机控制的半自动治疗诊断系统,糖尿病小鼠可半自动维持血糖稳态.通过结合数字信号和光基因工程细胞,本研究为疾病的综合诊断和治疗提供了新的方法。
    With the development of mobile communication technology, smartphones have been used in point-of-care technologies (POCTs) as an important part of telemedicine. Using a multidisciplinary design principle coupling electrical engineering, software development, synthetic biology, and optogenetics, the investigators developed a smartphone-controlled semiautomatic theranostic system that regulates blood glucose homeostasis in diabetic mice in an ultraremote-control manner. The present chapter describes how the investigators tailor-designed the implant architecture \"HydrogeLED,\" which is capable of coharboring a designer-cell-carrying alginate hydrogel and wirelessly powered far-red light LEDs. Using diabetes mellitus as a model disease, the in vivo expression of insulin or human glucagon-like peptide 1 (shGLP-1) from HydrogeLED implants could be controlled not only by pre-set ECNU-TeleMed programs, but also by a custom-engineered Bluetooth-active glucometer in a semiautomatic and glycemia-dependent manner. As a result, blood glucose homeostasis was semiautomatically maintained in diabetic mice through the smartphone-controlled semiautomatic theranostic system. By combining digital signals with optogenetically engineered cells, the present study provides a new method for the integrated diagnosis and treatment of diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号