synaptic transmission

突触传递
  • 文章类型: Journal Article
    重度抑郁障碍(MDD)是一种普遍存在的精神疾病,损害人们的生活质量。色氨酸是血清素的前体,情绪调节中的关键神经递质。在哺乳动物中,大多数游离色氨酸通过犬尿氨酸途径(KP)降解,导致一系列参与炎症的代谢物,免疫反应,和神经传递。喹啉酸(QA)之间的不平衡,一种有毒的代谢产物,和犬尿烯酸(KynA),保护性代谢产物,是MDD病理生理学中的相关现象。促炎细胞因子增加吲哚胺2,3-双加氧酶(IDO)的活性,导致KP中色氨酸的降解和QA释放的增加。IDO激活促炎基因,增强神经炎症和解除与慢性应激和MDD相关的其他生理机制。这篇综述强调了与应激和MDD有关的生理机制,这是KP失衡的基础,并讨论了潜在的治疗靶点。
    Major depressive disorder (MDD) is a prevalent psychiatric disorder that has damage to people\'s quality of life. Tryptophan is the precursor to serotonin, a critical neurotransmitter in mood modulation. In mammals, most free tryptophan is degraded by the kynurenine pathway (KP), resulting in a range of metabolites involved in inflammation, immune response, and neurotransmission. The imbalance between quinolinic acid (QA), a toxic metabolite, and kynurenic acid (KynA), a protective metabolite, is a relevant phenomenon involved in the pathophysiology of MDD. Proinflammatory cytokines increase the activity of the enzyme indoleamine 2,3-dioxygenase (IDO), leading to the degradation of tryptophan in the KP and an increase in the release of QA. IDO activates proinflammatory genes, potentiating neuroinflammation and deregulating other physiological mechanisms related to chronic stress and MDD. This review highlights the physiological mechanisms involved with stress and MDD, which are underlying an imbalance of the KP and discuss potential therapeutic targets.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    FKBP51,也称为FK506结合蛋白51,是一种分子伴侣和支架蛋白,在调节激素信号和应对胁迫方面具有重要作用。编码FKBP51的FKBP5的遗传变异与越来越多的神经精神疾病有关,这刺激了靶向治疗FKBP51的努力。然而,这些疾病中受FKBP51影响的分子机制和亚解剖区域尚不完全清楚.在这项研究中,我们旨在通过昼夜节律表型分析和分子分析来检验Fkbp5消融的影响.我们的研究结果表明,缺乏FKBP51并没有显着改变昼夜节律,由车轮运行活动检测到,但确实以性别依赖的方式提供了针对压力介导的节律性破坏的保护。Fkbp5KO小鼠的蛋白质变化,通过组织学和蛋白质组学测量,揭示了大脑区域和性别依赖方式的改变。值得注意的是,不管性别,老年Fkbp5KOs显示MYCBP2、FBXO45和SPRYD3水平升高,与神经元细胞粘附和突触完整性有关。此外,5-羟色胺受体信号和S100家族信号等通路在Fkbp5KO小鼠中被差异调节。加权蛋白质相关网络分析确定了与突触传递和神经炎症相关的蛋白质网络。这项工作产生的信息可用于更好地了解衰老和缺乏Fkbp5的情况下大脑的分子变化,这对持续开发针对压力相关疾病的FKBP51聚焦疗法具有重要意义。
    FKBP51, also known as FK506-binding protein 51, is a molecular chaperone and scaffolding protein with significant roles in regulating hormone signaling and responding to stress. Genetic variants in FKBP5, which encodes FKBP51, have been implicated in a growing number of neuropsychiatric disorders, which has spurred efforts to target FKBP51 therapeutically. However, the molecular mechanisms and sub-anatomical regions influenced by FKBP51 in these disorders are not fully understood. In this study, we aimed to examine the impact of Fkbp5 ablation using circadian phenotyping and molecular analyses. Our findings revealed that the lack of FKBP51 did not significantly alter circadian rhythms, as detected by wheel-running activity, but did offer protection against stress-mediated disruptions in rhythmicity in a sex-dependent manner. Protein changes in Fkbp5 KO mice, as measured by histology and proteomics, revealed alterations in a brain region- and sex-dependent manner. Notably, regardless of sex, aged Fkbp5 KOs showed elevated MYCBP2, FBXO45, and SPRYD3 levels, which are associated with neuronal-cell adhesion and synaptic integrity. Additionally, pathways such as serotonin receptor signaling and S100 family signaling were differentially regulated in Fkbp5 KO mice. Weighted protein correlation network analysis identified protein networks linked with synaptic transmission and neuroinflammation. The information generated by this work can be used to better understand the molecular changes in the brain during aging and in the absence of Fkbp5, which has implications for the continued development of FKBP51-focused therapeutics for stress-related disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    自闭症谱系障碍(ASD)是复杂的神经发育状况,其特征是社交障碍。重复的行为,和有限的利益。表观遗传修饰是基因表达的关键调节因子,在控制大脑功能和行为中起着至关重要的作用。赖氨酸(K)特异性脱甲基酶6B(KDM6B),一种胁迫诱导的H3K27me3去甲基酶,已经成为ASD风险最高的基因之一,但是KDM6B突变对神经元活动和行为功能的确切影响仍然难以捉摸。在这里,我们展示了KDM6B马赛克脑敲除对不同自闭症样表型(包括重复行为)的表现的影响,社交互动,和显著的认知缺陷。此外,KDM6B镶嵌敲除显示海马兴奋性突触传递异常降低NMDA受体介导的突触传递和可塑性。了解表观遗传修饰与神经元功能之间的复杂相互作用可能为ASD的病理生理学提供新的见解,并可能为靶向治疗干预的发展提供信息。
    Autism spectrum disorders (ASD) are complex neurodevelopmental conditions characterized by impairments in social communication, repetitive behaviors, and restricted interests. Epigenetic modifications serve as critical regulators of gene expression playing a crucial role in controlling brain function and behavior. Lysine (K)-specific demethylase 6B (KDM6B), a stress-inducible H3K27me3 demethylase, has emerged as one of the highest ASD risk genes, but the precise effects of KDM6B mutations on neuronal activity and behavioral function remain elusive. Here we show the impact of KDM6B mosaic brain knockout on the manifestation of different autistic-like phenotypes including repetitive behaviors, social interaction, and significant cognitive deficits. Moreover, KDM6B mosaic knockout display abnormalities in hippocampal excitatory synaptic transmission decreasing NMDA receptor mediated synaptic transmission and plasticity. Understanding the intricate interplay between epigenetic modifications and neuronal function may provide novel insights into the pathophysiology of ASD and potentially inform the development of targeted therapeutic interventions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    与年龄相关的膈肌损伤会导致呼吸系统并发症。神经肌肉接头(NMJ)功能障碍可能是老年膈肌薄弱的触发事件之一。在老年啮齿动物中描述了隔膜NMJ的显着结构和功能改变,但NMJ在中年时期的变化仍不清楚。这里,我们比较了年轻成年(3个月)和中年(12个月)BALB/c小鼠的膈肌。微电极记录,免疫荧光染色,电子显微镜,myography,使用全身体积描记术。我们揭示了突触前(i)和突触后(ii)的变化。前者(i)包括动作电位传播速度和低引起的神经递质释放的增加,moderate-,和高频活动,但突触素1和突触小泡簇的免疫表达降低。后者(ii)包括通过烟碱乙酰胆碱受体的电流减少及其分布区域。这些NMJ变化与对中度至高频神经激活的收缩反应增加相关。此外,我们发现呼吸模式的变化(峰值吸气流量增加和潮气量升高的趋势),这意味着中年小鼠的膈肌活动增加。我们得出的结论是,神经肌肉沟通的增强(由于突触前机制)伴随着改善的收缩反应发生在早期衰老的隔膜中。
    Age-related impairment of the diaphragm causes respiratory complications. Neuromuscular junction (NMJ) dysfunction can be one of the triggering events in diaphragm weaknesses in old age. Prominent structural and functional alterations in diaphragm NMJs were described in elderly rodents, but NMJ changes in middle age remain unclear. Here, we compared diaphragm muscles from young adult (3 months) and middle-aged (12 months) BALB/c mice. Microelectrode recordings, immunofluorescent staining, electron microscopy, myography, and whole-body plethysmography were used. We revealed presynaptic (i) and postsynaptic (ii) changes. The former (i) included an increase in both action potential propagation velocity and neurotransmitter release evoked by low-, moderate-, and high-frequency activity but a decrease in immunoexpression of synapsin 1 and synaptic vesicle clustering. The latter (ii) consisted of a decrease in currents via nicotinic acetylcholine receptors and the area of their distribution. These NMJ changes correlated with increased contractile responses to moderate- to high-frequency nerve activation. Additionally, we found alterations in the pattern of respiration (an increase in peak inspiratory flow and a tendency of elevation of the tidal volume), which imply increased diaphragm activity in middle-aged mice. We conclude that enhancement of neuromuscular communication (due to presynaptic mechanism) accompanied by improved contractile responses occurs in the diaphragm in early aging.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    神经元依赖于线粒体能量代谢来实现神经发生等基本功能,神经传递,和突触可塑性。线粒体功能障碍与神经发育障碍有关,包括脆性X综合征(FXS),遗传性智力障碍最常见的原因,这也表现出运动技能缺陷。然而,线粒体在FXS的病理生理学中的确切作用仍在很大程度上未知。值得注意的是,以前的研究已经将5-羟色胺能系统和线粒体活性与FXS联系起来。我们的研究调查了5-羟色胺受体1A(5-HT1A)在FXS中的潜在治疗作用。使用FXS的果蝇模型,我们证明了用埃托拉嗪治疗,一种5-HT1A激动剂,可以改善突触传递,纠正线粒体缺陷,并最终改善运动行为。虽然这些发现表明5-HT1A-线粒体轴可能是一个有希望的治疗靶点,在FXS的背景下需要进一步的调查。
    Neurons rely on mitochondrial energy metabolism for essential functions like neurogenesis, neurotransmission, and synaptic plasticity. Mitochondrial dysfunctions are associated with neurodevelopmental disorders including Fragile X syndrome (FXS), the most common cause of inherited intellectual disability, which also presents with motor skill deficits. However, the precise role of mitochondria in the pathophysiology of FXS remains largely unknown. Notably, previous studies have linked the serotonergic system and mitochondrial activity to FXS. Our study investigates the potential therapeutic role of serotonin receptor 1A (5-HT1A) in FXS. Using the Drosophila model of FXS, we demonstrated that treatment with eltoprazine, a 5-HT1A agonist, can ameliorate synaptic transmission, correct mitochondrial deficits, and ultimately improve motor behavior. While these findings suggest that the 5-HT1A-mitochondrial axis may be a promising therapeutic target, further investigation is needed in the context of FXS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    突触是一条信息传递机器,取代了神经元末端神经冲动的电传导。像许多生物学机制一样,它的运作受到时间限制的严重影响。进化选择的解决方案是基于化学交流,理论上,无法与神经传导的速度竞争。然而,生化和生物物理补偿机制减轻了这种内在的弱点:(i)通过突触小泡内神经递质的高浓度;(ii)通过脂筏中神经递质受体的浓度,它们是信号平台;事实上,筏脂类的存在,如神经节苷脂和胆固醇,允许通过这些脂质对突触受体进行微调;(iii)通过神经节苷脂的负电荷,这产生了一种有吸引力的(对于阳离子神经递质,例如5-羟色胺)或排斥(对于阴离子神经递质,如谷氨酸)电场。该电场控制涉及突触前和突触后神经元和星形胶质细胞的三部分突触中的谷氨酸流动。脑神经节苷脂表达的变化可以破坏谷氨酸能突触的功能,导致致命的疾病,比如Rett综合征.在这次审查中,我们建议深入分析神经节苷脂在谷氨酸能突触中的作用,突出了突触神经节苷脂的电场所发挥的原始和普遍被忽视的作用。
    The synapse is a piece of information transfer machinery replacing the electrical conduction of nerve impulses at the end of the neuron. Like many biological mechanisms, its functioning is heavily affected by time constraints. The solution selected by evolution is based on chemical communication that, in theory, cannot compete with the speed of nerve conduction. Nevertheless, biochemical and biophysical compensation mechanisms mitigate this intrinsic weakness: (i) through the high concentrations of neurotransmitters inside the synaptic vesicles; (ii) through the concentration of neurotransmitter receptors in lipid rafts, which are signaling platforms; indeed, the presence of raft lipids, such as gangliosides and cholesterol, allows a fine tuning of synaptic receptors by these lipids; (iii) through the negative electrical charges of the gangliosides, which generate an attractive (for cationic neurotransmitters, such as serotonin) or repulsive (for anionic neurotransmitters, such as glutamate) electric field. This electric field controls the flow of glutamate in the tripartite synapse involving pre- and post-synaptic neurons and the astrocyte. Changes in the expression of brain gangliosides can disrupt the functioning of the glutamatergic synapse, causing fatal diseases, such as Rett syndrome. In this review, we propose an in-depth analysis of the role of gangliosides in the glutamatergic synapse, highlighting the primordial and generally overlooked role played by the electric field of synaptic gangliosides.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Letter
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    末端选择子是通过调节关键效应分子的表达来控制神经元身份的转录因子。如神经递质生物合成蛋白和离子通道。终端选择器是否以及如何控制神经元连通性尚不清楚。这里,我们报告UNC-30(PITX2/3),秀丽隐杆线虫GABA神经索运动神经元的末端选择器,是神经递质受体聚集所必需的,突触后分化的标志.缺乏unc-30或madd-4B的动物,运动神经元分泌的突触组织者madd-4(punctin/ADAMTSL)的短同工型,在突触后肌细胞中显示严重的GABA受体A型(GABAAR)聚类缺陷。机械上,UNC-30直接作用于诱导和维持madd-4B和GABA生物合成基因的转录(例如,unc-25/GAD,unc-47/VGAT)。因此,UNC-30控制突触后肌细胞中的GABAA受体聚集和突触前细胞中的GABA生物合成,转录协调GABA神经传递的两个关键过程。Further,我们发现了多个靶基因和UNC-30作为基因转录的激活剂和阻遏剂的双重作用.我们对UNC-30功能的发现可能有助于我们对人类状况的分子理解,比如Axenfeld-Rieger综合征,由PITX2和PITX3基因变异引起。
    Terminal selectors are transcription factors that control neuronal identity by regulating expression of key effector molecules, such as neurotransmitter biosynthesis proteins and ion channels. Whether and how terminal selectors control neuronal connectivity is poorly understood. Here, we report that UNC-30 (PITX2/3), the terminal selector of GABA nerve cord motor neurons in Caenorhabditis elegans, is required for neurotransmitter receptor clustering, a hallmark of postsynaptic differentiation. Animals lacking unc-30 or madd-4B, the short isoform of the motor neuron-secreted synapse organizer madd-4 (punctin/ADAMTSL), display severe GABA receptor type A (GABAAR) clustering defects in postsynaptic muscle cells. Mechanistically, UNC-30 acts directly to induce and maintain transcription of madd-4B and GABA biosynthesis genes (e.g. unc-25/GAD, unc-47/VGAT). Hence, UNC-30 controls GABAA receptor clustering in postsynaptic muscle cells and GABA biosynthesis in presynaptic cells, transcriptionally coordinating two crucial processes for GABA neurotransmission. Further, we uncover multiple target genes and a dual role for UNC-30 as both an activator and a repressor of gene transcription. Our findings on UNC-30 function may contribute to our molecular understanding of human conditions, such as Axenfeld-Rieger syndrome, caused by PITX2 and PITX3 gene variants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    自闭症谱系障碍(ASD)包括一种复杂的神经发育状况,其特征是社交互动受损。涉及沟通缺陷和特定的行为模式,比如重复的行为。ASD是临床诊断的,通常需要时间,通常发生在四岁之前。影响突触传递的基因突变,如神经素和纽尿素,与ASD相关,并导致行为和认知缺陷。最近的研究强调了星形胶质细胞的作用,大脑中最丰富的神经胶质细胞,在ASD病理学中。星形胶质细胞中异常的Ca2+信号传导与行为缺陷和神经炎症有关。值得注意的是,星形胶质细胞的细胞因子IL-6过表达影响突触发生。神经递质水平改变,血脑屏障的破坏,和细胞因子失调进一步导致ASD复杂性。了解这些星形胶质细胞相关机制有望识别ASD亚型和开发靶向治疗。
    Autism spectrum disorder (ASD) comprises a complex neurodevelopmental condition characterized by an impairment in social interaction, involving communication deficits and specific patterns of behaviors, like repetitive behaviors. ASD is clinically diagnosed and usually takes time, typically occurring not before four years of age. Genetic mutations affecting synaptic transmission, such as neuroligin and neurexin, are associated with ASD and contribute to behavioral and cognitive deficits. Recent research highlights the role of astrocytes, the brain\'s most abundant glial cells, in ASD pathology. Aberrant Ca2+ signaling in astrocytes is linked to behavioral deficits and neuroinflammation. Notably, the cytokine IL-6 overexpression by astrocytes impacts synaptogenesis. Altered neurotransmitter levels, disruptions in the blood-brain barrier, and cytokine dysregulation further contribute to ASD complexity. Understanding these astrocyte-related mechanisms holds promise for identifying ASD subtypes and developing targeted therapies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    星形胶质细胞,一类主要的神经胶质细胞,是突触中的重要元素,它们与神经元进行双向串扰以调节神经传递的许多方面,电路功能,和行为。在神经元和星形胶质细胞中表达的突触相关基因的突变是大量神经系统疾病的核心因素,使它们编码的蛋白质成为治疗干预的突出靶标。然而,虽然许多这些突触蛋白在神经元中的作用已经确立,星形胶质细胞中相同蛋白质的功能在很大程度上是未知的。必须解决知识上的这一差距,以完善治疗方法。在这一章中,我们整合了多项荟萃分析和对现有文献的全面概述,以表明星形胶质细胞表达与神经元和突触转录组重叠的惊人数量的基因。Further,我们重点介绍了最近的报道,这些基因在生理和病理条件下在星形胶质细胞中的表达模式和潜在的新作用。强调在研究突触蛋白的功能和调节时考虑两种细胞类型的重要性。
    Astrocytes, a major class of glial cells, are an important element at the synapse where they engage in bidirectional crosstalk with neurons to regulate numerous aspects of neurotransmission, circuit function, and behavior. Mutations in synapse-related genes expressed in both neurons and astrocytes are central factors in a vast number of neurological disorders, making the proteins that they encode prominent targets for therapeutic intervention. Yet, while the roles of many of these synaptic proteins in neurons are well established, the functions of the same proteins in astrocytes are largely unknown. This gap in knowledge must be addressed to refine therapeutic approaches. In this chapter, we integrate multiomic meta-analysis and a comprehensive overview of current literature to show that astrocytes express an astounding number of genes that overlap with the neuronal and synaptic transcriptomes. Further, we highlight recent reports that characterize the expression patterns and potential novel roles of these genes in astrocytes in both physiological and pathological conditions, underscoring the importance of considering both cell types when investigating the function and regulation of synaptic proteins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号