synaptic connectivity

突触连通性
  • 文章类型: Journal Article
    当测量活脑组织中的神经元之间的突触连接时,存在显著的技术挑战。膜片钳技术,当用来探测突触连接时,是手动费力和耗时的。为了提高效率,我们采取了另一种方法:在每次记录尝试后,而不是收回所有的贴片夹持电极,我们只清洗了其中一个,并重复使用它来获得另一个录音,同时保持其他录音。通过一次新的膜片钳记录尝试,可以探索许多新的连接。通过这种方式将一个移液管放在其他移液管前面,一个人可以“走过”组织,称为“补丁行走”。“我们对两个移液器进行了136次膜片钳尝试,实现71个成功的全细胞记录(52.2%)。其中,我们探测了29对(即,58个双向探测连接)平均91µm体细胞间距离,找到3个连接。补丁行走产生80-92%更多的探测连接,实验用10-100个细胞比传统的突触连接搜索方法。
    在尝试寻找突触连接时,认识到膜片钳的手工劳动和时间密集型性质,我们的目标是提高效率。我们介绍了一种新颖的方法,称为“补丁行走”,“清洁并重复使用一个贴片夹紧电极,通过一次记录尝试就可以探索众多连接,并提高识别突触连接的效率。
    Significant technical challenges exist when measuring synaptic connections between neurons in living brain tissue. The patch clamping technique, when used to probe for synaptic connections, is manually laborious and time-consuming. To improve its efficiency, we pursued another approach: instead of retracting all patch clamping electrodes after each recording attempt, we cleaned just one of them and reused it to obtain another recording while maintaining the others. With one new patch clamp recording attempt, many new connections can be probed. By placing one pipette in front of the others in this way, one can \"walk\" across the tissue, termed \"patch-walking.\" We performed 136 patch clamp attempts for two pipettes, achieving 71 successful whole cell recordings (52.2%). Of these, we probed 29 pairs (i.e., 58 bidirectional probed connections) averaging 91 μm intersomatic distance, finding 3 connections. Patch-walking yields 80-92% more probed connections, for experiments with 10-100 cells than the traditional synaptic connection searching method.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    海马CA3区在学习和记忆中起着重要作用。CA3锥体神经元(PNs)接受两个突出的兴奋性输入-来自齿状回(DG)的苔藓纤维(MFs)和来自CA3PNs的复发性络脉(RCs)-在模式分离和模式完成中起相反的作用。分别。尽管海马解剖的背侧异质性,生理学,行为已经确立,关于CA3PN中突触连接的背侧异质性一无所知。在这项研究中,我们进行了Timm的硫化银染,树突和脊柱形态学分析,和两种性别的小鼠的离体电生理学,以研究沿着CA3背腹轴的MF和RC途径的异质性。我们的形态学分析表明,腹侧CA3(vCA3)PNs具有更大的树突长度和更复杂的树突树枝化,与背侧CA3(dCA3)PN相比。此外,使用ChannelRhodopsin2(ChR2)辅助膜片钳记录,我们发现,从dCA3到vCA3,RC-MF激发驱动到CA3PN的比率大幅增加,而vCA3PN接收的MF明显较弱,但是更强的RCs,激励比dCA3PNs。鉴于MF与RC输入在模式分离与完成中的不同作用,我们发现CA3PNs中MF和RC兴奋的显着背腹侧变化可能对CA3回路对海马功能的背腹侧差异的贡献具有重要的功能意义。意义陈述海马CA3区对于记忆形成是必需的。CA3锥体神经元接受来自CA3的复发性侧支(RC)和来自齿状回(DG)的苔藓纤维(MF),它们在模式完成(内存泛化)和分离(区分)方面具有相反的功能,分别。尽管海马背腹异质性已得到很好的证实,CA3连接的背腹侧异质性未知。这里,我们证明了RC-MF激励的比例从dCA3到vCA3大幅增加,vCA3接收显著较弱的MF,但是更强的RC,激发比dCA3。因此,我们的研究揭示了一种新的基于CA3的突触机制,该机制可能为腹侧海马体提供计算优势,使其更强烈地参与需要比背侧海马体更低精确度但更一般化的行为.
    The hippocampal CA3 region plays an important role in learning and memory. CA3 pyramidal neurons (PNs) receive two prominent excitatory inputs-mossy fibers (MFs) from dentate gyrus (DG) and recurrent collaterals (RCs) from CA3 PNs-that play opposing roles in pattern separation and pattern completion, respectively. Although the dorsoventral heterogeneity of the hippocampal anatomy, physiology, and behavior has been well established, nothing is known about the dorsoventral heterogeneity of synaptic connectivity in CA3 PNs. In this study, we performed Timm\'s sulfide silver staining, dendritic and spine morphological analyses, and ex vivo electrophysiology in mice of both sexes to investigate the heterogeneity of MF and RC pathways along the CA3 dorsoventral axis. Our morphological analyses demonstrate that ventral CA3 (vCA3) PNs possess greater dendritic lengths and more complex dendritic arborization, compared with dorsal CA3 (dCA3) PNs. Moreover, using ChannelRhodopsin2 (ChR2)-assisted patch-clamp recording, we found that the ratio of the RC-to-MF excitatory drive onto CA3 PNs increases substantially from dCA3 to vCA3, with vCA3 PNs receiving significantly weaker MFs, but stronger RCs, excitation than dCA3 PNs. Given the distinct roles of MF versus RC inputs in pattern separation versus completion, our findings of the significant dorsoventral variations of MF and RC excitation in CA3 PNs may have important functional implications for the contribution of CA3 circuit to the dorsoventral difference in hippocampal function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    阿尔茨海默病(AD)是一种进行性神经变性疾病。身体活动是最有希望的可改变的生活方式之一,可以有效地减缓早期AD的进展。
    探索在AD中受损的分子过程,这些过程被体力活动相反地保留和增强。
    在包含AD患者和具有不同程度体力活动的老年人的数据集中进行综合转录组分析。通过分析另外两个数据集来验证hub基因的变化。通过定量聚合酶链反应(qPCR)在有或没有身体活动的APP/PS1转基因小鼠的海马和皮质中进一步检测hub基因的表达。
    交叉比较突出显示了195个DEG,在AD和高体力活动(HPA)之间显示出相反的调节模式。常见的DEGs主要参与突触小泡再循环和突触传递,在AD患者中大幅下调,但在患有HPA的老年人中上调。从PPI网络中获得了与突触小泡更新相关的两个关键模块和四个集线器基因。AD转基因小鼠中这些hub基因(SYT1,SYT4,SH3GL2和AP2M1)的表达显着降低,并被HPA训练逆转。
    HPA可能通过上调一系列突触小泡转运相关蛋白来逆转AD病理,这可能会提高突触小泡周转的效率并促进神经元间信息传递。该研究为强调HPA对AD的保护作用的机制提供了新的见解。
    UNASSIGNED: Alzheimer\'s disease (AD) is a progressive neurodegeneration disease. Physical activity is one of the most promising modifiable lifestyles that can be effective in slowing down the progression of AD at an early stage.
    UNASSIGNED: Explore the molecular processes impaired in AD that were conversely preserved and enhanced by physical activity.
    UNASSIGNED: Integrated transcriptomic analyses were performed in datasets that contain AD patients and elders with different degrees of physical activity. The changes of the hub genes were validated through analyzing another two datasets. The expression of the hub genes was further detected in the hippocampus and cortexes of APP/PS1 transgenic mice with or without physical activity by Quantitative polymerase chain reaction (qPCR).
    UNASSIGNED: Cross-comparison highlighted 195 DEGs displaying opposed regulation patterns between AD and high physical activity (HPA). The common DEGs were predominantly involved in synaptic vesicle recycling and synaptic transmission, largely downregulated in AD patients but upregulated in the elders with HPA. Two key modules and four hub genes that were related to synaptic vesicle turnover were obtained from the PPI network. The expression of these hub genes (SYT1, SYT4, SH3GL2, and AP2M1) was significantly decreased in AD transgenic mice and was reversed by HPA training.
    UNASSIGNED: HPA may reverse AD pathology by upregulating a range of synaptic vesicle transport related proteins which might improve the efficiency of synaptic vesicle turnover and facilitate inter-neuronal information transfer. The study provides novel insights into the mechanisms underlining the protective effects of HPA on AD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    映射不同神经元类型的连通性为理解神经回路的结构和功能提供了基础。基于RNA条形码测序的高通量和低成本神经解剖学技术具有在细胞分辨率和全大脑范围内映射电路的潜力,但是现有的基于Sindbis病毒的技术只能使用顺行追踪方法绘制远程预测图。狂犬病病毒可以通过对投射神经元进行逆行标记或对遗传靶向的突触后神经元的直接输入进行单突触追踪来补充顺行追踪方法。然而,迄今为止,条形码狂犬病病毒仅用于绘制体内非神经元细胞相互作用和培养神经元的突触连接图。在这里,我们将条形码狂犬病病毒与单细胞和原位测序相结合,以在小鼠大脑中进行逆行标记和跨突触标记。我们使用单细胞RNA-seq对96个逆行标记的细胞和295个跨突触标记的细胞进行了测序,和4130个逆行标记的细胞和2914个原位跨突触标记的细胞。我们发现,使用单细胞RNA-seq和原位测序可以可靠地鉴定狂犬病病毒感染的细胞的转录组身份。通过将基因表达与从条形码测序推断的连通性相关联,我们从多个皮质区域中区分了远距离投射的皮质细胞类型,并确定了突触连接趋同或发散的细胞类型.原位测序与条形码狂犬病病毒的结合补充了现有的基于测序的神经解剖学技术,并为大规模绘制神经元类型的突触连接提供了潜在的途径。
    在大脑中,信息通过复杂的轴突和树突网络从一个细胞传递到下一个细胞,这些轴突和树突在称为突触的连接处物理相互作用。映射出这个突触连接——也就是说,究竟哪些神经元通过突触连接-仍然是一个重大挑战。单突触追踪是一种强大的方法,它允许神经科学家通过利用通过突触在神经元之间传播的病毒来探索神经网络。尤其是狂犬病病毒。这种病原体仅从“突触后”传播到“突触前”神经元-从突触接收信息的细胞,回到发送它的那个。因此,狂犬病病毒的修饰变体可用于揭示与最初引入狂犬病病毒的神经元群连接的突触前细胞。然而,这种方法不允许科学家确定每个突触前细胞连接的突触后神经元。绕过这个问题的一种方法是将单突触追踪与RNA条形码相结合,以创建不同版本的改良狂犬病病毒,然后将其引入单独的神经元群体中。跟踪每个版本的传播使神经科学家能够准确地发现哪个突触前细胞向每个突触后神经元发出信号。到目前为止,这种方法已被用于检查实验室中生长的神经元的突触连接,但是将其应用于大脑中的神经元仍然很困难。作为回应,张,Jin等人。目的是证明依赖条形码狂犬病病毒的单突触追踪如何用于剖析小鼠大脑中的神经网络。首先,他们证实,利用原位RNA测序和单细胞RNA测序,可以准确检测出哪个版本的病毒已经传播到突触前神经元.接下来,他们描述了如何分析这些信息来建立潜在的神经网络模型,以及这项工作需要什么类型的额外实验。最后,他们使用这种方法来识别倾向于连接到相同突触后细胞的神经元,然后研究它们的共同点,展示了该技术如何更好地理解神经回路。总的来说,张的工作,Jin等人。提供了与基于条形码狂犬病病毒的单突触追踪实验相关的要求和限制的全面审查,以及未来如何优化该方法。这些信息将对在大脑中映射神经网络感兴趣的科学家产生广泛兴趣。
    Mapping the connectivity of diverse neuronal types provides the foundation for understanding the structure and function of neural circuits. High-throughput and low-cost neuroanatomical techniques based on RNA barcode sequencing have the potential to map circuits at cellular resolution and a brain-wide scale, but existing Sindbis virus-based techniques can only map long-range projections using anterograde tracing approaches. Rabies virus can complement anterograde tracing approaches by enabling either retrograde labeling of projection neurons or monosynaptic tracing of direct inputs to genetically targeted postsynaptic neurons. However, barcoded rabies virus has so far been only used to map non-neuronal cellular interactions in vivo and synaptic connectivity of cultured neurons. Here we combine barcoded rabies virus with single-cell and in situ sequencing to perform retrograde labeling and transsynaptic labeling in the mouse brain. We sequenced 96 retrogradely labeled cells and 295 transsynaptically labeled cells using single-cell RNA-seq, and 4130 retrogradely labeled cells and 2914 transsynaptically labeled cells in situ. We found that the transcriptomic identities of rabies virus-infected cells can be robustly identified using both single-cell RNA-seq and in situ sequencing. By associating gene expression with connectivity inferred from barcode sequencing, we distinguished long-range projecting cortical cell types from multiple cortical areas and identified cell types with converging or diverging synaptic connectivity. Combining in situ sequencing with barcoded rabies virus complements existing sequencing-based neuroanatomical techniques and provides a potential path for mapping synaptic connectivity of neuronal types at scale.
    In the brain, messages are relayed from one cell to the next through intricate networks of axons and dendrites that physically interact at junctions known as synapses. Mapping out this synaptic connectivity – that is, exactly which neurons are connected via synapses – remains a major challenge. Monosynaptic tracing is a powerful approach that allows neuroscientists to explore neural networks by harnessing viruses which spread between neurons via synapses, in particular the rabies virus. This pathogen travels exclusively from ‘postsynaptic’ to ‘presynaptic’ neurons – from the cell that receives a message at a synapse, back to the one that sends it. A modified variant of the rabies virus can therefore be used to reveal the presynaptic cells connecting to a population of neurons in which it has been originally introduced. However, this method does not allow scientists to identify the exact postsynaptic neuron that each presynaptic cell is connected to. One way to bypass this issue is to combine monosynaptic tracing with RNA barcoding to create distinct versions of the modified rabies virus, which are then introduced into separate populations of neurons. Tracking the spread of each version allows neuroscientists to spot exactly which presynaptic cells signal to each postsynaptic neuron. So far, this approach has been used to examine synaptic connectivity in neurons grown in the laboratory, but it remains difficult to apply it to neurons in the brain. In response, Zhang, Jin et al. aimed to demonstrate how monosynaptic tracing that relies on barcoded rabies viruses could be used to dissect neural networks in the mouse brain. First, they confirmed that it was possible to accurately detect which version of the virus had spread to presynaptic neurons using both in situ and single-cell RNA sequencing. Next, they described how this information could be analysed to build models of potential neural networks, and what type of additional experiments are required for this work. Finally, they used the approach to identify neurons that tend to connect to the same postsynaptic cells and then investigated what these have in common, showing how the technique enables a finer understanding of neural circuits. Overall, the work by Zhang, Jin et al. provides a comprehensive review of the requirements and limitations associated with monosynaptic tracing experiments based on barcoded rabies viruses, as well as how the approach could be optimized in the future. This information will be of broad interest to scientists interested in mapping neural networks in the brain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:处理神经活动以重建网络连接是神经科学的中心焦点,然而,生物神经系统的时空必要条件对当前的神经元感知方式具有挑战性。因此,利用有限数据成功推断突触连接的方法,以单单位分辨率预测活动,破译它们对整个系统的影响,可以发现关于神经处理的关键信息。尽管出现了用于推断连通性的强大方法,基于时间子采样数据的网络重建仍然不够探索。
    方法:我们通过处理可变时间区间内的激发率来推断突触权重,抑制性,和未连接的单位。我们评估分类并优化突触后尖峰序列重建的模型参数。我们在显示爆发模式的泄漏积分和点火神经元的生理网络上测试我们的方法,并根据微电极阵列数据评估突触后活动的预测。
    结果:结果揭示了改善预测和性能的参数,并表明较低分辨率的数据和对神经元的有限访问可能是首选。
    结论:最近的计算方法表明,通过考虑尖峰滞后,可以高度改进并行尖峰序列网络的连通性重建,时变点火速率,和其他潜在的动态。然而,这些方法没有充分探索代表新数据类型的时间子抽样。
    结论:我们提供了一个框架,用于从时间质量有限的数据进行逆向工程神经网络,描述每个bin大小的最佳参数,可以使用非线性方法进一步改进,并应用于多个大脑回路中更复杂的读数和连通性分布。
    Processing neural activity to reconstruct network connectivity is a central focus of neuroscience, yet the spatiotemporal requisites of biological nervous systems are challenging for current neuronal sensing modalities. Consequently, methods that leverage limited data to successfully infer synaptic connections, predict activity at single unit resolution, and decipher their effect on whole systems, can uncover critical information about neural processing. Despite the emergence of powerful methods for inferring connectivity, network reconstruction based on temporally subsampled data remains insufficiently unexplored.
    We infer synaptic weights by processing firing rates within variable time bins for a heterogeneous feed-forward network of excitatory, inhibitory, and unconnected units. We assess classification and optimize model parameters for postsynaptic spike train reconstruction. We test our method on a physiological network of leaky integrate-and-fire neurons displaying bursting patterns and assess prediction of postsynaptic activity from microelectrode array data.
    Results reveal parameters for improved prediction and performance and suggest that lower resolution data and limited access to neurons can be preferred.
    Recent computational methods demonstrate highly improved reconstruction of connectivity from networks of parallel spike trains by considering spike lag, time-varying firing rates, and other underlying dynamics. However, these methods insufficiently explore temporal subsampling representative of novel data types.
    We provide a framework for reverse engineering neural networks from data with limited temporal quality, describing optimal parameters for each bin size, which can be further improved using non-linear methods and applied to more complicated readouts and connectivity distributions in multiple brain circuits.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在感觉皮层发育过程中,从深层到上层的上升神经支配为成年后保留的其他回路的构建提供了临时支架。该序列的改变是否导致神经发育疾病中的脑功能障碍仍然未知。在缺席癫痫(GAERS)的遗传模型中使用功能方法,我们在桶状皮层中进行了调查,癫痫发作的起始部位,2/3层锥体神经元上的兴奋性和抑制性神经支配的成熟和细胞组织成神经元集合。我们发现,GAERS中的皮质发育缺乏在正常大鼠出生后第二周结束时观察到的深层联系的早期激增,以及伴随的结构成多个组件。稍后,癫痫发作时(1个月大),与Wistar大鼠相比,GAERS中的兴奋性神经元过度兴奋。这些发现表明,连通性发展的早期缺陷可能会促进这种典型的癫痫特征和/或其合并症。
    During development of the sensory cortex, the ascending innervation from deep to upper layers provides a temporary scaffold for the construction of other circuits that remain at adulthood. Whether an alteration in this sequence leads to brain dysfunction in neuro-developmental diseases remains unknown. Using functional approaches in a genetic model of Absence Epilepsy (GAERS), we investigated in barrel cortex, the site of seizure initiation, the maturation of excitatory and inhibitory innervations onto layer 2/3 pyramidal neurons and cell organization into neuronal assemblies. We found that cortical development in GAERS lacks the early surge of connections originating from deep layers observed at the end of the second postnatal week in normal rats and the concomitant structuring into multiple assemblies. Later on, at seizure onset (1 month old), excitatory neurons are hyper-excitable in GAERS when compared to Wistar rats. These findings suggest that early defects in the development of connectivity could promote this typical epileptic feature and/or its comorbidities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    可视化突触连接传统上依赖于耗时的基于电子显微镜的成像方法。为了扩展突触连接的分析,已经建立了基于荧光蛋白的技术,从化学或电突触的特定突触前或突触后成分的标记到跨突触邻近标记技术,如GRASP和iBLINC。在本文中,我们描述WormPsyqi,一个通用的图像分析管道,以高通量和稳健的方式自动量化突触定位的荧光信号,减少人类偏见。我们还提供了30个转基因菌株的资源,这些菌株标记了线虫秀丽隐杆线虫神经系统中的化学或电突触,使用CLA-1,RAB-3,GRASP(化学突触),或innexin(电突触)报告者。我们表明,WormPsyQi捕获突触结构,尽管在神经突形态上存在大量异质性,荧光信号,和成像参数。我们使用这些工具包来量化突触的多个明显和微妙的特征-例如数量,尺寸,强度,和突触的空间分布-在跨越神经系统各个区域的数据集中,发育阶段,和性别。尽管管道是在突触的上下文中描述的,它可以用于其他“点状”信号,如荧光标记的神经递质受体和细胞粘附分子,以及其他亚细胞环境中的蛋白质。通过克服时间限制,样本量,细胞形态学,和表型空间,这项工作为进一步分析秀丽隐杆线虫的突触生物学提供了强大的资源。
    Visualizing synaptic connectivity has traditionally relied on time-consuming electron microscopy-based imaging approaches. To scale the analysis of synaptic connectivity, fluorescent protein-based techniques have been established, ranging from the labeling of specific pre- or post-synaptic components of chemical or electrical synapses to transsynaptic proximity labeling technology such as GRASP and iBLINC. In this paper, we describe WormPsyQi, a generalizable image analysis pipeline that automatically quantifies synaptically localized fluorescent signals in a high-throughput and robust manner, with reduced human bias. We also present a resource of 30 transgenic strains that label chemical or electrical synapses throughout the nervous system of the nematode Caenorhabditis elegans, using CLA-1, RAB-3, GRASP (chemical synapses), or innexin (electrical synapse) reporters. We show that WormPsyQi captures synaptic structures in spite of substantial heterogeneity in neurite morphology, fluorescence signal, and imaging parameters. We use these toolkits to quantify multiple obvious and subtle features of synapses - such as number, size, intensity, and spatial distribution of synapses - in datasets spanning various regions of the nervous system, developmental stages, and sexes. Although the pipeline is described in the context of synapses, it may be utilized for other \'punctate\' signals, such as fluorescently tagged neurotransmitter receptors and cell adhesion molecules, as well as proteins in other subcellular contexts. By overcoming constraints on time, sample size, cell morphology, and phenotypic space, this work represents a powerful resource for further analysis of synapse biology in C. elegans.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们的大脑如何产生不同类型的神经元并组装成精确的神经回路尚不清楚。使用果蝇层神经元类型(L1-L5),我们表明,初级同源结构域转录因子(HDTF)脑特异性同源盒(Bsh)在祖细胞中启动,并在L4/L5神经元中维持到成年。Bsh激活次级HDTFAp(L4)和Pdm3(L5)并指定L4/L5神经元命运,同时抑制HDTFZfh1以防止异位L1/L3命运(对照:L1-L5;Bsh敲除:L1-L3),从而产生正常视觉敏感性的椎板神经元多样性。随后,在L4神经元中,Bsh和Ap在前馈回路中起作用,以激活突触识别分子DIP-β,从而桥接神经元命运决定与突触连接。Bsh的表达式:大坝,特别是在L4中,揭示了Bsh与DIP-β基因座和其他候选L4功能同一性基因的结合。我们建议HDTF分层功能来协调神经元分子同一性,电路形成,和功能。分层HDTF可以代表用于将神经元多样性链接到电路组装和功能的保守机制。
    How our brain generates diverse neuron types that assemble into precise neural circuits remains unclear. Using Drosophila lamina neuron types (L1-L5), we show that the primary homeodomain transcription factor (HDTF) brain-specific homeobox (Bsh) is initiated in progenitors and maintained in L4/L5 neurons to adulthood. Bsh activates secondary HDTFs Ap (L4) and Pdm3 (L5) and specifies L4/L5 neuronal fates while repressing the HDTF Zfh1 to prevent ectopic L1/L3 fates (control: L1-L5; Bsh-knockdown: L1-L3), thereby generating lamina neuronal diversity for normal visual sensitivity. Subsequently, in L4 neurons, Bsh and Ap function in a feed-forward loop to activate the synapse recognition molecule DIP-β, thereby bridging neuronal fate decision to synaptic connectivity. Expression of a Bsh:Dam, specifically in L4, reveals Bsh binding to the DIP-β locus and additional candidate L4 functional identity genes. We propose that HDTFs function hierarchically to coordinate neuronal molecular identity, circuit formation, and function. Hierarchical HDTFs may represent a conserved mechanism for linking neuronal diversity to circuit assembly and function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    神经元通常基于突触输入的整合在其轴突初始片段处产生动作电位。在许多神经元中,轴突从躯体延伸出来,同样加权树枝状输入。在海马锥体细胞的一部分中发现了一个明显的例外,其中轴突从基底树突中出现。这种结构使这些携带轴突的树突(AcD)成为特权输入路线。我们发现在雄性小鼠中,与体细胞轴突起源的细胞相比,CA1区域的此类细胞从对侧CA3接受更强的兴奋性输入。这得到AcD上来自对侧CA3的推定突触的更高计数的支持。这些发现,结合先前对它们在锐波波纹发射中的独特作用的观察,提示该神经元子集在以记忆为中心的振荡过程中协调双半球海马活动中的关键作用。意义神经元分为多个亚型,许多具有不同的形态,可能反映出与其不同的功能相关。海马CA1锥体细胞大多被视为一个均匀的群体,形成与记忆形成和巩固相关的瞬时功能集合。这些神经元中的很大一部分具有来自基底树突的不寻常的轴突起源。此功能可促进网络状态的参与,并在躯体周围具有强烈的外围抑制作用,表示在记忆形成网络中重要作用的属性。我们现在报道,带有轴突树突的锥体细胞从对侧半球接收到特别强的输入。这种独特的连通性将神经元形态与网络连接联系起来,并指向存在海马锥体细胞的专门亚群,以进行半球间的通讯。
    Neurons typically generate action potentials at their axon initial segment based on the integration of synaptic inputs. In many neurons, the axon extends from the soma, equally weighting dendritic inputs. A notable exception is found in a subset of hippocampal pyramidal cells where the axon emerges from a basal dendrite. This structure allows these axon-carrying dendrites (AcDs) a privileged input route. We found that in male mice, such cells in the CA1 region receive stronger excitatory input from the contralateral CA3, compared with those with somatic axon origins. This is supported by a higher count of putative synapses from contralateral CA3 on the AcD. These findings, combined with prior observations of their distinct role in sharp-wave ripple firing, suggest a key role of this neuron subset in coordinating bi-hemispheric hippocampal activity during memory-centric oscillations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    爆炸暴露会导致持久的听觉缺陷,对患者影响显著。尽管爆炸对位于耳朵的听觉功能的影响已得到充分证明,爆炸对中枢听觉处理的影响在很大程度上是不确定的。了解与爆炸伤相关的中枢神经系统的结构和功能改变对于解开爆炸诱发的病理生理途径和促进治疗干预措施的发展至关重要。在这项研究中,我们使用电生理学和光遗传学分析相结合,蛋白质组学分析,和形态学评估,以研究爆炸暴露后小鼠听觉皮层突触连接的损害。我们的结果表明,在爆炸伤的急性期,内侧膝状核(MGN)和听觉皮层(AC)之间的远程功能连接受损。我们还确定了在爆炸暴露后7天内受损的突触传递和树突状脊柱改变,在爆炸后28天恢复。此外,蛋白质组分析确定了皮质中一些差异表达的蛋白质,这些蛋白质与突触信号和可塑性有关。这些发现共同表明,在暴露于冲击波后,听觉皮层中声音信号网络的爆炸引起的变化可能是急性和亚急性阶段听力缺陷的基础。这项研究可以揭示爆炸引起的听觉功能障碍的扰动,并提供对潜在治疗窗口的见解,以改善爆炸暴露个体的听觉结果。
    Blast exposure can cause auditory deficits that have a lasting, significant impact on patients. Although the effects of blast on auditory functions localized to the ear have been well documented, the impact of blast on central auditory processing is largely undefined. Understanding the structural and functional alterations in the central nervous system (CNS) associated with blast injuries is crucial for unraveling blast-induced pathophysiological pathways and advancing development of therapeutic interventions. In this study, we used electrophysiology in combination with optogenetics assay, proteomic analysis, and morphological evaluation to investigate the impairment of synaptic connectivity in the auditory cortex (AC) of mice following blast exposure. Our results show that the long-range functional connectivity between the medial geniculate nucleus (MGN) and AC was impaired in the acute phase of blast injury. We also identified impaired synaptic transmission and dendritic spine alterations within 7 days of blast exposure, which recovered at 28 days post-blast. Additionally, proteomic analysis identified a few differentially expressed proteins in the cortex that are involved in synaptic signaling and plasticity. These findings collectively suggest that blast-induced alterations in the sound signaling network in the auditory cortex may underlie hearing deficits in the acute and sub-acute phases after exposure to shockwaves. This study may shed light on the perturbations underlying blast-induced auditory dysfunction and provide insights into the potential therapeutic windows for improving auditory outcomes in blast-exposed individuals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号