survival motor neuron 1

  • 文章类型: Journal Article
    目的:脊髓性肌萎缩症(SMA)是由存活运动神经元1(SMN1)的纯合子缺失和复合杂合突变引起的神经肌肉疾病,严重程度与存活运动神经元2(SMN2)的拷贝数有关。本研究旨在开发一种快速、全面的SMA诊断方法。
    方法:采用扩增难治性突变系统聚合酶链反应-毛细管电泳(ARMS-PCR-CE)方法,对292例临床疑似SMA患儿和394名家族成员进行检测,针对19个报告的突变,并将结果与多重连接依赖性探针扩增(MLPA)的结果进行了比较。通过SMN1远程PCR和Sanger测序进一步证实了具有鉴定的点突变的个体。
    结果:共有202名SMA儿童,272个运营商,在这项研究中确定了212名正常人。SMN1和SMN2中外显子7和8的R值分布在这些队列中没有发现差异,变异系数始终低于0.08。为了检测SMN1和SMN2中的外显子7和8拷贝数,ARMS-PCR-CE结果与MLPA的结果一致。约4.95%(10/202)的研究患者具有复合杂合突变。
    结论:ARMS-PCR-CE检测是一个全面、快速,同时检测SMN1/SMN2中外显子7和8的拷贝数,以及SMN1中的19点突变和SMN2中的2个增强子的SMA的准确诊断方法。这种方法可以有效地减少诊断的时间范围,促进早期干预和预防出生缺陷。
    OBJECTIVE: Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by homozygous deletion and compound heterozygous mutations in survival motor neuron 1 (SMN1), with severity tied to the copy number of survival motor neuron 2 (SMN2). This study aimed to develop a rapid and comprehensive method for the diagnosis of SMA.
    METHODS: A total of 292 children with clinically suspected SMA and 394 family members were detected by the amplification refractory mutation system polymerase chain reaction-capillary electrophoresis (ARMS-PCR-CE) method, which targeted 19 reported mutations, and the results were compared with those in multiplex ligation-dependent probe amplification (MLPA). Individuals with identified point mutations were further confirmed by SMN1 long-range PCR and Sanger sequencing.
    RESULTS: A total of 202 children with SMA, 272 carriers, and 212 normal individuals were identified in this study. No difference was found in the R-value distribution of exons 7 and 8 in SMN1 and SMN2 among these cohorts, with coefficients of variation consistently below 0.08. To detect exon 7 and 8 copy numbers in SMN1 and SMN2, the ARMS-PCR-CE results were concordant with those of MLPA. Approximately 4.95 % (10/202) of the study patients had compound heterozygous mutations.
    CONCLUSIONS: The ARMS-PCR-CE assay is a comprehensive, rapid, and accurate diagnostic method for SMA that simultaneously detects copy numbers of exons 7 and 8 in SMN1/SMN2, as well as 19 point mutations in SMN1 and 2 enhancers in SMN2. This approach can effectively reduce the time frame for diagnosis, facilitating early intervention and preventing birth defects.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:葡萄牙的新生儿筛查(NBS)是一项重要的公共卫生措施,可以早期发现特定疾病,从而可以进行早期治疗。脊髓性肌萎缩症(SMA)是一种常染色体隐性遗传性神经肌肉疾病,可导致人脊髓前角细胞变性并随后丢失运动神经元。其发病率估计为1.6000-11.800例活产。正在新生儿筛查实验室对100.000名新生儿进行初步研究,目的是确定特异性,灵敏度,以及葡萄牙NBS实验室进行SMA筛查的可行性。
    方法:本文介绍的研究基于从新生儿筛查获得的数据,涉及对25.000名新生儿的分析。通过定性检测SMN1基因的外显子7进行SMA筛选。使用市售的实时PCR进行测定,EonisSMN1,TREC,和KREC套件。
    结果:对总共25.000名新生儿的干血点进行了测试;在这些新生儿中,两个被诊断为具有存活运动神经元1(SMN1)缺失的SMA。将这两个SMA阳性样品送至专门的临床中心,并将外周血样品送至参考实验室以确认外显子7缺失并确定SMN2拷贝数。
    结论:早期诊断和干预对SMA治疗有效很重要;治疗应在SMA症状前阶段开始。因此,强烈建议新生儿进行SMA筛查.目前,SMA的靶向治疗是可用的,全世界都在尝试将SMA筛查纳入新生儿。
    BACKGROUND: Newborn screening (NBS) in Portugal is a significant public health measure to provide early detection for specific disorders so that early treatment is possible. Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder that causes degeneration of anterior horn cells in the human spinal cord and subsequent loss of motor neurons. Its incidence is estimated in 1.6000-11.800 live births. A pilot study on 100.000 newborns is being carried out at the neonatal screening laboratory with the aim of determining the specificity, sensitivity, and feasibility of the SMA screening at the NBS laboratory in Portugal.
    METHODS: The study presented here was based on data obtained from neonatal screening, involving the analysis of 25.000 newborns. SMA screening is performed by a qualitative detection of exon 7 of the SMN1 gene. The assay was performed using a commercially available real-time PCR, the Eonis SMN1, TREC, and KREC kit.
    RESULTS: The dried blood spots of a total of 25.000 newborns were tested; among these newborns, two were diagnosed as having SMA with survival motor neuron 1 (SMN1) deletion. These two SMA-positive samples were sent to a specialized clinical centre and a peripheral blood sample was sent to the reference laboratory for confirmation of the exon 7 deletion and determination of the SMN2 copy number.
    CONCLUSIONS: Early diagnosis and intervention are important for SMA treatment to be effective; the treatment should be started at the pre-symptomatic stage of SMA. Thus, newborn screening for SMA is strongly recommended. Currently, targeted therapies for SMA are available, and attempts are being made worldwide to include SMA screening in newborns.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    After 26 years of discovery of the determinant survival motor neuron 1 and the modifier survival motor neuron 2 genes (SMN1 and SMN2, respectively), three SMN-dependent specific therapies are already approved by FDA and EMA and, as a consequence, worldwide SMA patients are currently under clinical investigation and treatment. Bi-allelic pathogenic variants (mostly deletions) in SMN1 should be detected in SMA patients to confirm the disease. Determination of SMN2 copy number has been historically employed to correlate with the phenotype, predict disease evolution, stratify patients for clinical trials and to define those eligible for treatment. In view that discordant genotype-phenotype correlations are present in SMA, besides technical issues with detection of SMN2 copy number, we have hypothesized that copy number determination is only the tip of the iceberg and that more deepen studies of variants, sequencing and structures of the SMN2 genes are necessary for a better understanding of the disease as well as to investigate possible influences in treatment responses. Here, we highlight the importance of a comprehensive approach of SMN1 and SMN2 genetics with the perspective to apply for better prediction of SMA in positive neonatal screening cases and early diagnosis to start treatments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder mainly caused by homozygous deletions that include exon 7 of the survival motor neuron 1 (SMN1) gene. A nearby paralog gene, SMN2, obstructs the specific detection of SMN1. We optimized a duplexed real-time PCR approach using locked nucleic acid (LNA)-modified primers to specifically detect SMN1.
    An LNA-modified primer pair with 3\' ends targeting SMN1 specific sites c.835-44g and c.840C was designed, and its specificity was examined by real-time PCR and Sanger Sequencing. A duplexed real-time PCR approach for amplifying SMN1 and control gene albumin (ALB) was developed. A randomized double-blind trial with 97 fresh peripheral blood samples and 25 dried blood spots (DBS) was conducted to evaluate the clinical efficacy of the duplexed approach. This new approach was then used to screen 753 newborn DBS.
    The LNA-modified primers exhibited enhanced specificity and 6.8% increased efficiency for SMN1 amplification, compared with conventional primers. After stabilizing the SMN1 test by optimizing the duplexed real-time PCR approach, a clinical trial validated that the sensitivity and specificity of our new approach for detecting SMA patients and carriers was 100%. Using this new approach, 15 of the screened 753 newborns were identified as carriers via DBS, while the rest were identified as normal individuals. These data reveal a carrier rate of 1.99% in Hunan province, South Central China.
    We have developed a novel, specific SMN1 detection approach utilizing real-time PCR with LNA-modified primers, which could be applied to both prenatal carrier and newborn screening.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在部门间研究中心(CIR-Myo)的主持下,帕多瓦大学(意大利)继续进行了半个多世纪的骨骼肌研究。欧洲翻译Myology杂志(EJTM),最近也在A&CM-C翻译Myology基金会的支持下,帕多瓦,意大利。第30卷(1),2020年EJTM会议的摘要集开始,“2020年帕多瓦肌肉日:流动医学30年的转化研究”。这是一次国际会议,将于2020年3月18日至21日在意大利的EuganeiHills和Padova举行。摘要是转化研究和多维方法的优秀例子,需要分类和管理(在急性和慢性阶段)从神经跨越的流动性疾病,代谢和创伤综合征对衰老的生物过程。物理医学和康复的典型目标之一确实是减轻疼痛并增加活动能力,使残障人士能够自由行走,花园,然后再次开车。本摘要集的优秀内容反映了研究人员和临床医生谁是渴望在PaduaMuscleDays呈现他们的结果的高科学素质。一系列的EJTM通信也将增加这个初步证据。
    More than half a century of skeletal muscle research is continuing at Padua University (Italy) under the auspices of the Interdepartmental Research Centre of Myology (CIR-Myo), the European Journal of Translational Myology (EJTM) and recently also with the support of the A&CM-C Foundation for Translational Myology, Padova, Italy. The Volume 30(1), 2020 of the EJTM opens with the collection of abstracts for the conference \"2020 Padua Muscle Days: Mobility Medicine 30 years of Translational Research\". This is an international conference that will be held between March 18-21, 2020 in Euganei Hills and Padova in Italy. The abstracts are excellent examples of translational research and of the multidimensional approaches that are needed to classify and manage (in both the acute and chronic phases) diseases of Mobility that span from neurologic, metabolic and traumatic syndromes to the biological process of aging. One of the typical aim of Physical Medicine and Rehabilitation is indeed to reduce pain and increase mobility enough to enable impaired persons to walk freely, garden, and drive again. The excellent contents of this Collection of Abstracts reflect the high scientific caliber of researchers and clinicians who are eager to present their results at the PaduaMuscleDays. A series of EJTM Communications will also add to this preliminary evidence.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Spinal muscular atrophy (SMA) is a neuromuscular disorder, characterized by muscle atrophy and impaired mobility. A homozygous deletion of survival motor neuron 1 (SMN1), exon 7 is the main cause of SMA in ~94% of patients worldwide, but only accounts for 51% of South African (SA) black patients. SMN1 and its highly homologous centromeric copy, survival motor neuron 2 (SMN2), are located in a complex duplicated region. Unusual copy number variations (CNVs) have been reported in black patients, suggesting the presence of complex pathogenic rearrangements. The aim of this study was to further investigate the genetic cause of SMA in the black SA population. Multiplex ligation-dependent probe amplification (MLPA) testing was performed on 197 unrelated black patients referred for SMA testing (75 with a homozygous deletion of SMN1, exon 7; 50 with a homozygous deletion of SMN2, exon 7; and 72 clinically suggestive patients with no homozygous deletions). Furthermore, 122 black negative controls were tested. For comparison, 68 white individuals (30 with a homozygous deletion of SMN1, exon 7; 8 with a homozygous deletion of SMN2, exon 7 and 30 negative controls) were tested. Multiple copies (>2) of SMN1, exon 7 were observed in 50.8% (62/122) of black negative controls which could mask heterozygous SMN1 deletions and potential pathogenic CNVs. MLPA is not a reliable technique for detecting carriers in the black SA population. Large deletions extending into the rest of SMN1 and neighboring genes were more frequently observed in black patients with homozygous SMN1, exon 7 deletions when compared to white patients. Homozygous SMN2, exon 7 deletions were commonly observed in black individuals. No clear pathogenic CNVs were identified in black patients but discordant copy numbers of exons suggest complex rearrangements, which may potentially interrupt the SMN1 gene. Only 8.3% (6/72) of clinically suggestive patients had heterozygous deletions of SMN1, exon 7 (1:0) which is lower than previous SA reports of 69.5%. This study emphasizes the lack of understanding of the architecture of the SMN region as well as the cause of SMA in the black SA population. These factors need to be taken into account when counseling and performing diagnostic testing in black populations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Case Reports
    Spinal muscular atrophy (SMA) is an autosomal recessive genetic disorder caused by survival motor neuron (SMN) protein deficiency leading the loss of motor neurons in the anterior horns of the spinal cord and brainstem. More than 95% of SMA patients are attributed to the homozygous deletion of survival motor neuron 1 (SMN1) gene, and approximately 5% are caused by compound heterozygous with a SMN1 deletion and a subtle mutation. Here, we identified a rare variant c.835-5T>G in intron 6 of SMN1 in a patient affected with type I SMA. We analyzed the functional consequences of this mutation on mRNA splicing in vitro. After transfecting pCI-SMN1, pCI-SMN2, and pCI-SMN1 c.835-5T>G minigenes into HEK293, Neuro-2a, and SHSY5Y cells, reverse transcription polymerase chain reaction (RT-PCR) was performed to compare the splicing effects of these minigenes. Finally, we found that this mutation resulted in the skipping of exon 7 in SMN1, which confirmed the genetic diagnosis of SMA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The objective of this study was to review the clinical characteristics of patients with spinal muscular atrophy and to emphasize the importance of performing genetic mutational analysis at initial patient assessment. This is a single center oriented, retrospective, and descriptive study conducted in Seoul, South Korea. Genetic mutational analysis to detect the deletion of exon 7 of the SMN1 gene on chromosome 5q13 was performed by multiplex ligation-dependent probe amplification. Clinical features, electrodiagnostic study results, muscle biopsy results, and laboratory test results were reviewed from patient medical records. Of all 28 patients (15 males and 13 females), all showed bilateral symmetric proximal dominant weakness. Among them, 3 patients were classified as type I, 14 patients as type II, and 11 patients as type III. Twenty-five patients had scoliosis and eight of these patients received surgical treatment for scoliosis with improvement in clinical outcomes. Ventilator support was used in 15 patients. In terms of the diagnostic process, 15 patients had completed an electrodiagnostic study and muscle biopsy before genetic testing, and six of these patients were initially misdiagnosed with myopathy. Owing to the similar clinical features of SMA and congenital myopathy, an electrodiagnostic study and muscle biopsy could create confusion in the correct diagnosis in some cases. Therefore, it is recommended that genetic mutation analysis should be conducted along with an electrodiagnostic study or muscle biopsy in the diagnostic process for spinal muscular atrophy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号