suppressed-by-contrast

对比度抑制
  • 文章类型: Journal Article
    视网膜神经节细胞(RGC)是眼睛的尖峰投射神经元,可编码视觉环境的不同特征。对向不同RGC类型提供突触输入以驱动特征选择性的电路进行了广泛研究,但是,旨在了解内在属性以及它们如何影响特征选择性的研究较少。我们在鼠标中引入RGC类型,突发对比压制(bSbC)RGC,并将其与OFF持续阿尔法(OFFsA)进行比较。它们的对比响应函数的差异不是由突触输入的差异引起的,而是由其固有特性引起的。尖峰生成是这种功能差异背后的关键内在属性;bSbCRGC经历去极化阻滞,而OFFsARGC保持较高的尖峰率。我们的结果表明,内在特性的差异使这两种RGC类型能够检测并将相同视觉刺激的不同特征传递到大脑。
    Retinal ganglion cells (RGCs) are the spiking projection neurons of the eye that encode different features of the visual environment. The circuits providing synaptic input to different RGC types to drive feature selectivity have been studied extensively, but there has been less research aimed at understanding the intrinsic properties and how they impact feature selectivity. We introduce an RGC type in the mouse, the Bursty Suppressed-by-Contrast (bSbC) RGC, and compared it to the OFF sustained alpha (OFFsA). Differences in their contrast response functions arose from differences not in synaptic inputs but in their intrinsic properties. Spike generation was the key intrinsic property behind this functional difference; the bSbC RGC undergoes depolarization block while the OFFsA RGC maintains a high spike rate. Our results demonstrate that differences in intrinsic properties allow these two RGC types to detect and relay distinct features of an identical visual stimulus to the brain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    结论:M1固有光敏视网膜神经节细胞(ipRGC)已知为非成像视觉功能(潜意识视觉)编码绝对光强度(辐照度),如昼夜节律光夹带和瞳孔光反射。尚不清楚M1细胞如何响应相对光强度(对比度)和图案化的视觉信号。本研究确定了M1细胞中一种特殊形式的对比敏感性(对比抑制),提示图案化视觉信号在调节非图像形成视觉中的作用,以及M1ipRGC在编码图像形成视觉线索中的潜在作用。该研究还揭示了由囊泡谷氨酸转运体3(vGluT3)无长突细胞介导的突触机制和视网膜回路,这些细胞是M1细胞对比反应抑制的基础。M1ipRGC亚型(M1a和M1b)被揭示,基于与vGluT3无长突细胞的突触连接,感受场属性,固有光敏感性和膜兴奋性,和形态特征,建议在离散的M1亚群中划分视觉任务。
    已知M1型ipRGC(固有光敏视网膜神经节细胞)编码环境光信号,用于非图像形成的视觉功能,例如昼夜节律光夹带和瞳孔光反射。这里,我们报道,小鼠视网膜中的M1细胞(M1a)亚群具有对比度抑制(sbc)触发功能,这是以前仅在介导成像视觉的神经节细胞中发现的感受野特性.使用光遗传学和双膜片钳技术,我们发现囊泡谷氨酸转运体3(vGluT3)(vGluT3)无长突细胞使甘氨酸能,但不是谷氨酸,突触特异性地连接到M1a细胞上。M1a细胞视觉诱发反应的时空和药理学特性与vGluT3细胞的感受野特征密切相关,提示vGluT3无长突细胞输入在塑造M1a细胞的sbc触发特征中的主要作用。我们发现M1细胞的其他亚群(M1b),没有收到直接的vGluT3单元格输入,缺少sbc触发器功能,在固有光响应方面与M1a细胞明显不同,膜兴奋性,感受场特征和形态特征。一起,结果揭示了一个视网膜回路,该回路使用sbc触发功能来调节辐照度编码,并可能将图像形成线索发送到大脑中的非图像形成视觉中心。
    M1 intrinsically photosensitive retinal ganglion cells (ipRGCs) are known to encode absolute light intensity (irradiance) for non-image-forming visual functions (subconscious vision), such as circadian photoentrainment and the pupillary light reflex. It remains unclear how M1 cells respond to relative light intensity (contrast) and patterned visual signals. The present study identified a special form of contrast sensitivity (suppressed-by-contrast) in M1 cells, suggesting a role of patterned visual signals in regulating non-image-forming vision and a potential role of M1 ipRGCs in encoding image-forming visual cues. The study also uncovered a synaptic mechanism and a retinal circuit mediated by vesicular glutamate transporter 3 (vGluT3) amacrine cells that underlie the suppressed-by-contrast response of M1 cells. M1 ipRGC subtypes (M1a and M1b) were revealed that are distinguishable based on synaptic connectivity with vGluT3 amacrine cells, receptive field properties, intrinsic photo sensitivity and membrane excitability, and morphological features, suggesting a division of visual tasks among discrete M1 subpopulations.
    The M1 type ipRGC (intrinsically photosensitive retinal ganglion cell) is known to encode ambient light signals for non-image-forming visual functions such as circadian photo-entrainment and the pupillary light reflex. Here, we report that a subpopulation of M1 cells (M1a) in the mouse retina possess the suppressed-by-contrast (sbc) trigger feature that is a receptive field property previously found only in ganglion cells mediating image-forming vision. Using optogenetics and the dual patch clamp technique, we found that vesicular glutamate transporter 3 (vGluT3) (vGluT3) amacrine cells make glycinergic, but not glutamatergic, synapses specifically onto M1a cells. The spatiotemporal and pharmacological properties of visually evoked responses of M1a cells closely matched the receptive field characteristics of vGluT3 cells, suggesting a major role of the vGluT3 amacrine cell input in shaping the sbc trigger feature of M1a cells. We found that the other subpopulation of M1 cells (M1b), which did not receive a direct vGluT3 cell input, lacked the sbc trigger feature, being distinctively different from M1a cells in intrinsic photo responses, membrane excitability, receptive-field characteristics and morphological features. Together, the results reveal a retinal circuit that uses the sbc trigger feature to regulate irradiance coding and potentially send image-forming cues to non-image-forming visual centres in the brain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    视网膜神经节细胞(RGCs)传递约40个平行和独立的视觉信息流,每个编码视觉场景的特定特征,大脑进行进一步处理。视觉神经元对对比度变化的响应的极性通常是用于功能分类的第一个特征:ON细胞增加其峰值速率为正对比度;OFF细胞增加其峰值速率为负对比度;ON-OFF细胞增加其峰值速率为两种对比度极性。对比度抑制(SbC)神经元代表不太为人所知的第四类;它们将放电降低到正和负对比的基线率以下。SbCRGC是50多年前发现的,现在已经在几种哺乳动物的丘脑和初级视觉皮层中发现了SbC视觉神经元,包括灵长类动物.小鼠中SbCRGC的最新发现为追踪负责SbC计算的视网膜中的上游回路和使用此信息的大脑中的下游目标提供了新的机会。我们回顾并阐明了这些RGC中SbC计算的电路机制的最新工作。机制研究依赖于精确定义的细胞类型,我们认为,喜欢ON,关闭,和开-关RGC,SbCRGC由不止一种类型组成。对SbCRGC多样性的新认识将有助于指导他们在大脑中的目标及其在视觉感知和行为中的作用的未来工作。
    Retinal ganglion cells (RGCs) relay ~40 parallel and independent streams of visual information, each encoding a specific feature of a visual scene, to the brain for further processing. The polarity of a visual neuron\'s response to a change in contrast is generally the first characteristic used for functional classification: ON cells increase their spike rate to positive contrast; OFF cells increase their spike rate for negative contrast; ON-OFF cells increase their spike rate for both contrast polarities. Suppressed-by-Contrast (SbC) neurons represent a less well-known fourth category; they decrease firing below a baseline rate for both positive and negative contrasts. SbC RGCs were discovered over 50 years ago, and SbC visual neurons have now been found in the thalamus and primary visual cortex of several mammalian species, including primates. Recent discoveries of SbC RGCs in mice have provided new opportunities for tracing upstream circuits in the retina responsible for the SbC computation and downstream targets in the brain where this information is used. We review and clarify recent work on the circuit mechanism of the SbC computation in these RGCs. Studies of mechanism rely on precisely defined cell types, and we argue that, like ON, OFF, and ON-OFF RGCs, SbC RGCs consist of more than one type. A new appreciation of the diversity of SbC RGCs will help guide future work on their targets in the brain and their roles in visual perception and behavior.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    视网膜神经节细胞(RGC)的尖峰序列是大脑视觉信息的唯一来源;了解哺乳动物视网膜中的20种RGC类型如何对不同的视觉特征和事件做出反应是理解视觉的基础。对比度抑制(SbC)RGC与所有其他RGC类型的区别在于,它们响应于光增量(ON)和减量(OFF)而降低而不是增加激发率。这里,我们在小鼠中对SbC-RGC进行了遗传鉴定和形态学表征,并在双光子引导下对它们进行膜片钳记录。我们发现强ON抑制(甘氨酸>GABA)超过弱ON激发,并且该抑制(甘氨酸>GABA)与光关闭时激发的减少一致。这些输入模式解释了SbC-RGC的抑制性尖峰响应,在昏暗明亮的光线条件下观察到。对SbC-RGC的抑制是由整流的感受野亚基驱动的,引导我们假设SbC-RGC可以在视网膜图像中发出与模式无关的信号。的确,我们发现,在广泛的纹理对比和空间频率范围内,与小鼠扫视状眼球运动匹配的随机纹理的变化会引起强大的抑制性输入并抑制SbC-RGC的尖峰。同样,基于对小鼠眨眼的运动学分析的刺激始终抑制SbC-RGC尖峰。接收器的工作特性表明,SbC-RGC是自我生成的视觉刺激的可靠指标,可能有助于眨眼和扫视的中央处理。
    该研究在遗传学上鉴定和形态学上表征小鼠中的对比抑制的视网膜神经节细胞(SbC-RGC)。在双光子引导下来自SbC-RGC的靶向膜片钳记录阐明了介导尖峰抑制到对比步骤的突触机制,并揭示SbC-RGC对模拟扫视样眼球运动和眨眼的刺激做出可靠反应。对扫视样眼球运动和眨眼的反应的相似性表明,SbC-RGC可以为自我生成的视觉刺激提供统一的信号。
    Spike trains of retinal ganglion cells (RGCs) are the sole source of visual information to the brain; and understanding how the ∼20 RGC types in mammalian retinae respond to diverse visual features and events is fundamental to understanding vision. Suppressed-by-contrast (SbC) RGCs stand apart from all other RGC types in that they reduce rather than increase firing rates in response to light increments (ON) and decrements (OFF). Here, we genetically identify and morphologically characterize SbC-RGCs in mice, and target them for patch-clamp recordings under two-photon guidance. We find that strong ON inhibition (glycine > GABA) outweighs weak ON excitation, and that inhibition (glycine > GABA) coincides with decreases in excitation at light OFF. These input patterns explain the suppressive spike responses of SbC-RGCs, which are observed in dim and bright light conditions. Inhibition to SbC-RGC is driven by rectified receptive field subunits, leading us to hypothesize that SbC-RGCs could signal pattern-independent changes in the retinal image. Indeed, we find that shifts of random textures matching saccade-like eye movements in mice elicit robust inhibitory inputs and suppress spiking of SbC-RGCs over a wide range of texture contrasts and spatial frequencies. Similarly, stimuli based on kinematic analyses of mouse blinking consistently suppress SbC-RGC spiking. Receiver operating characteristics show that SbC-RGCs are reliable indicators of self-generated visual stimuli that may contribute to central processing of blinks and saccades.
    CONCLUSIONS: This study genetically identifies and morphologically characterizes suppressed-by-contrast retinal ganglion cells (SbC-RGCs) in mice. Targeted patch-clamp recordings from SbC-RGCs under two-photon guidance elucidate the synaptic mechanisms mediating spike suppression to contrast steps, and reveal that SbC-RGCs respond reliably to stimuli mimicking saccade-like eye movements and blinks. The similarity of responses to saccade-like eye movements and blinks suggests that SbC-RGCs may provide a unified signal for self-generated visual stimuli.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号