sulfurized polyacrylonitrile (SPAN)

  • 文章类型: Journal Article
    硫化聚丙烯腈(SPAN)是锂硫电池的正极材料,由于其可逆的固体-固体转化为高能量密度电池。然而,SPAN阴极的缓慢反应动力学显著限制了它们的输出容量,尤其是在高循环速率下。在这里,通过简单的相分离方法开发了CNT互穿分层多孔SPAN电极。具有快速电子/离子通道的柔性自支撑SPAN阴极无需额外的粘合剂即可合成,和优异的高速率循环性能,即使有大量的硫负荷获得。对于用这种特殊阴极组装的电池,在1C下1000次循环后,硫负载为1.5mgcm-2,获得了令人印象深刻的1090mAhg-1初始放电容量和800mAhg-1保留容量。此外,通过引入V2O5锚定碳纤维作为具有吸附和催化功能的中间层,614.8mAhg-1的高初始容量和在5C下500次循环后500mAhg-1的显著持续容量,每个循环的衰变速率为0.037%,硫负载为1.5mgcm-2。具有增强的循环性能的柔性SPAN电极的可行构造使当前处理成为新型高倍率锂-硫电池和其他新兴电池电极的有希望的策略。
    Sulfurized polyacrylonitrile (SPAN) is a promising cathode material for lithium-sulfur batteries owing to its reversible solid-solid conversion for high-energy-density batteries. However, the sluggish reaction kinetics of SPAN cathodes significantly limit their output capacity, especially at high cycling rates. Herein, a CNT-interpenetrating hierarchically porous SPAN electrode is developed by a simple phase-separation method. Flexible self-supporting SPAN cathodes with fast electron/ion pathways are synthesized without additional binders, and exceptional high-rate cycling performances are obtained even with substantial sulfur loading. For batteries assembled with this special cathode, an impressive initial discharge capacity of 1090 mAh g-1 and a retained capacity of 800 mAh g-1 are obtained after 1000 cycles at 1 C with a sulfur loading of 1.5 mg cm-2. Furthermore, by incorporating V2O5 anchored carbon fiber as an interlayer with adsorption and catalysis function, a high initial capacity of 614.8 mAh g-1 and a notable sustained capacity of 500 mAh g-1 after 500 cycles at 5 C are achieved, with an ultralow decay rate of 0.037% per cycle with a sulfur loading of 1.5 mg cm-2. The feasible construction of flexible SPAN electrodes with enhanced cycling performance enlists the current processing as a promising strategy for novel high-rate lithium-sulfur batteries and other emerging battery electrodes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Lithium-sulfur (Li-S) batteries are highly regarded as the next-generation energy-storage devices because of their ultrahigh theoretical energy density of 2600 Wh kg-1 . Sulfurized polyacrylonitrile (SPAN) is considered a promising sulfur cathode to substitute carbon/sulfur (C/S) composites to afford higher Coulombic efficiency, improved cycling stability, and potential high-energy-density Li-SPAN batteries. However, the instability of the Li-metal anode threatens the performances of Li-SPAN batteries bringing limited lifespan and safety hazards. Li-metal can react with most kinds of electrolyte to generate a protective solid electrolyte interphase (SEI), electrolyte regulation is a widely accepted strategy to protect Li-metal anodes in rechargeable batteries. Herein, the basic principles and current challenges of Li-SPAN batteries are addressed. Recent advances on electrolyte regulation towards stable Li-metal anodes in Li-SPAN batteries are summarized to suggest design strategies of solvents, lithium salts, additives, and gel electrolyte. Finally, prospects for future electrolyte design and Li anode protection in Li-SPAN batteries are discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号