structure prediction

结构预测
  • 文章类型: Journal Article
    一种新的二维(2D)非MXene过渡金属碳化物,Mo3C2是使用USPEX代码找到的。综合第一性原理计算表明,Mo3C2单层表现出热,动态,和机械稳定性,这可以确保在实际应用中优异的耐久性。Lix@(3×3)-Mo3C2(x=1-36)和Nax@(3×3)-Mo3C2(x=1-32)的优化结构被确定为预期的阳极材料。金属Mo3C2片对Li表现出0.190eV的低扩散势垒,对Na表现出0.118eV的低扩散势垒,对Li表现出0.31-0.55V的低平均开路电压,对Na表现出0.18-0.48V的低平均开路电压。当吸附两层吸附原子时,Li和Na的理论能量容量为344和306mAhg-1,分别,与商业石墨相当。此外,Mo3C2衬底可以在高温下的锂化或碱化过程期间保持结构完整性。考虑到这些特点,我们提出的Mo3C2板坯是未来Li和Na离子电池的阳极材料的潜在候选者。
    A new two-dimensional (2D) non-MXene transition metal carbide, Mo3C2, was found using the USPEX code. Comprehensive first-principles calculations show that the Mo3C2 monolayer exhibits thermal, dynamic, and mechanical stability, which can ensure excellent durability in practical applications. The optimized structures of Lix@(3×3)-Mo3C2 (x = 1-36) and Nax@(3×3)-Mo3C2 (x = 1-32) were identified as prospective anode materials. The metallic Mo3C2 sheet exhibits low diffusion barriers of 0.190 eV for Li and 0.118 eV for Na and low average open circuit voltages of 0.31-0.55 V for Li and 0.18-0.48 V for Na. When adsorbing two layers of adatoms, the theoretical energy capacities are 344 and 306 mA h g-1 for Li and Na, respectively, which are comparable to that of commercial graphite. Moreover, the Mo3C2 substrate can maintain structural integrity during the lithiation or sodiation process at high temperature. Considering these features, our proposed Mo3C2 slab is a potential candidate as an anode material for future Li- and Na-ion batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在这一章中,我们使用ColabFold网界面预测拟南芥受体同源跨膜RING-H2同工型1(RMR1)的结构与AlphaFold2的十字花素(CRU1)的C端分选决定簇复合,并进行分子动力学模拟以探测预测结构的动力学。我们的结果预测,CRU1的ctVSD的C端羧酸酯基团被RMR1的货物结合环的保守Arg89和CRU1的Arg468通过RMR1的货物结合袋中的负电荷残基识别。此处描述的程序可用于其他蛋白质复合物的建模。
    In this chapter, we predict the structure of the Arabidopsis receptor-homology-transmembrane-RING-H2 isoform 1 (RMR1) in complex with the C-terminal sorting determinant of cruciferin (CRU1) by AlphaFold2 using the ColabFold web interface and to perform molecular dynamics simulation to probe the dynamics of the predicted structures. Our results predict that the C-terminal carboxylate group of ctVSD of CRU1 is recognized by the conserved Arg89 of the cargo-binding loop of RMR1 and Arg468 of CRU1 by negative charge residues in the cargo-binding pocket of RMR1. The procedures described here are useful for modeling of other protein complexes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    分泌的信号肽是生长的中心调节因子,发展,和应激反应,但是这些肽及其受体进化的具体步骤还没有得到很好的理解。此外,肽-受体结合的分子机制只有几个例子是已知的,主要是由于全球很少的实验室对蛋白质结构测定能力的可用性有限。植物已经进化出大量分泌的信号肽和相应的跨膜受体。应激反应性丝氨酸富内源性肽(SCOOPs)最近被鉴定。生物活性SCOOP被枯草杆菌酶蛋白水解处理,并被模型植物拟南芥中富含亮氨酸的重复受体激酶男性发现因子1-相互作用受体样激酶2(MIK2)感知。SCOOP和MIK2是如何(共同)进化的,以及SCOOP如何与MIK2结合是未知的。使用350个植物基因组的计算机模拟分析和随后的功能测试,我们揭示了MIK2作为SCOOP受体的保守性。然后,我们利用基于AI的结构建模和比较基因组学来鉴定两个保守的假定SCOOP-MIK2结合口袋,这些同源物预测与序列不同的SCOOP的“SxS”基序相互作用。两个预测的结合口袋的诱变损害了SCOOP与MIK2的结合,SCOOP诱导的MIK2与其共受体的胆碱酯酶不敏感1相关激酶1之间的复合物形成,以及SCOOP诱导的活性氧产生,因此,证实了我们的预测.总的来说,除了揭示难以捉摸的SCOOP-MIK2结合机制外,我们的分析管道结合了系统基因组学,基于人工智能的结构预测,实验生化和生理验证为阐明肽配体-受体感知机制提供了蓝图。
    Secreted signaling peptides are central regulators of growth, development, and stress responses, but specific steps in the evolution of these peptides and their receptors are not well understood. Also, the molecular mechanisms of peptide-receptor binding are only known for a few examples, primarily owing to the limited availability of protein structural determination capabilities to few laboratories worldwide. Plants have evolved a multitude of secreted signaling peptides and corresponding transmembrane receptors. Stress-responsive SERINE RICH ENDOGENOUS PEPTIDES (SCOOPs) were recently identified. Bioactive SCOOPs are proteolytically processed by subtilases and are perceived by the leucine-rich repeat receptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2) in the model plant Arabidopsis thaliana. How SCOOPs and MIK2 have (co)evolved, and how SCOOPs bind to MIK2 are unknown. Using in silico analysis of 350 plant genomes and subsequent functional testing, we revealed the conservation of MIK2 as SCOOP receptor within the plant order Brassicales. We then leveraged AI-based structural modeling and comparative genomics to identify two conserved putative SCOOP-MIK2 binding pockets across Brassicales MIK2 homologues predicted to interact with the \"SxS\" motif of otherwise sequence-divergent SCOOPs. Mutagenesis of both predicted binding pockets compromised SCOOP binding to MIK2, SCOOP-induced complex formation between MIK2 and its coreceptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1, and SCOOP-induced reactive oxygen species production, thus, confirming our in silico predictions. Collectively, in addition to revealing the elusive SCOOP-MIK2 binding mechanism, our analytic pipeline combining phylogenomics, AI-based structural predictions, and experimental biochemical and physiological validation provides a blueprint for the elucidation of peptide ligand-receptor perception mechanisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    研究序列及其相应的三维结构之间的关系有助于结构生物学家解决蛋白质折叠问题。尽管有几种实验和计算机模拟方法,仍然从序列中理解或解码三维结构仍然是一个谜。在这种情况下,结构预测的准确性起着不可或缺的作用。为了解决这个问题,已创建更新的Web服务器(CSSP-2.0),以通过部署现有算法来提高我们以前版本的CSSP的准确性。它使用输入作为概率,并将二级结构的共识预测为高度精确的三态Q3(螺旋,strand,和线圈)。这个预测是使用六种最近表现最好的方法来实现的:MUFOLD-SS,RaptorX,PSSpredv4,PSIPRED,JPredv4和Porter5.0。CSSP-2.0验证包括涉及来自PDB的各种蛋白质类别的数据集,CullPDB,和AlphaFold数据库。我们的结果表明,共识Q3预测的准确性有了显著提高。使用CSSP-2.0,晶体学可以从整个复杂结构中挑选出稳定的规则二级结构,这将有助于推断假设蛋白质的功能注释。Web服务器可在https://bioserver3免费获得。物理。iisc.AC.in/cgi-bin/cssp-2/.
    Studying the relationship between sequences and their corresponding three-dimensional structure assists structural biologists in solving the protein-folding problem. Despite several experimental and in-silico approaches, still understanding or decoding the three-dimensional structures from the sequence remains a mystery. In such cases, the accuracy of the structure prediction plays an indispensable role. To address this issue, an updated web server (CSSP-2.0) has been created to improve the accuracy of our previous version of CSSP by deploying the existing algorithms. It uses input as probabilities and predicts the consensus for the secondary structure as a highly accurate three-state Q3 (helix, strand, and coil). This prediction is achieved using six recent top-performing methods: MUFOLD-SS, RaptorX, PSSpred v4, PSIPRED, JPred v4, and Porter 5.0. CSSP-2.0 validation includes datasets involving various protein classes from the PDB, CullPDB, and AlphaFold databases. Our results indicate a significant improvement in the accuracy of the consensus Q3 prediction. Using CSSP-2.0, crystallographers can sort out the stable regular secondary structures from the entire complex structure, which would aid in inferring the functional annotation of hypothetical proteins. The web server is freely available at https://bioserver3.physics.iisc.ac.in/cgi-bin/cssp-2/.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    了解蛋白质在选择压力下如何进化是一个长期的挑战。搜索空间的巨大限制了系统地评估多个同时突变的影响,所以突变通常是单独评估的。然而,上位性,或者突变相互作用的方式,基于对单个突变的测量,阻止了对组合突变的准确预测。这里,我们使用人工智能来定义蛋白质结合位点的整个功能序列景观,我们称这种方法为完全组合突变计数(CCME)。通过利用CCME,我们能够在这个功能序列景观中构建一个完整的进化连接图。作为概念的证明,我们将CCME应用于SARS-CoV-2刺突蛋白受体结合域的ACE2结合位点。我们从整个功能序列景观中选择了代表性的变体用于实验室测试。我们确定了尽管改变了超过40%的评估残基位置,但仍保留了结合ACE2的功能的变体,和变体现在逃避结合和单克隆抗体的中和。这项工作代表了朝着实现病原体进化的精确预测迈出的关键第一步,开辟主动缓解的途径。
    Understanding how proteins evolve under selective pressure is a longstanding challenge. The immensity of the search space has limited efforts to systematically evaluate the impact of multiple simultaneous mutations, so mutations have typically been assessed individually. However, epistasis, or the way in which mutations interact, prevents accurate prediction of combinatorial mutations based on measurements of individual mutations. Here, we use artificial intelligence to define the entire functional sequence landscape of a protein binding site in silico, and we call this approach Complete Combinatorial Mutational Enumeration (CCME). By leveraging CCME, we are able to construct a comprehensive map of the evolutionary connectivity within this functional sequence landscape. As a proof of concept, we applied CCME to the ACE2 binding site of the SARS-CoV-2 spike protein receptor binding domain. We selected representative variants from across the functional sequence landscape for testing in the laboratory. We identified variants that retained functionality to bind ACE2 despite changing over 40% of evaluated residue positions, and the variants now escape binding and neutralization by monoclonal antibodies. This work represents a crucial initial stride toward achieving precise predictions of pathogen evolution, opening avenues for proactive mitigation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    分子对接用于预测特定分子与靶标的最佳取向以形成稳定的复合物。它根据配体和靶受体(通常是蛋白质)的结合特性,对任何复合物的3D结构进行预测。这是一个非常有用的工具,它被用作研究配体如何附着在蛋白质上的模型。对接也可用于研究配体和蛋白质的相互作用以分析抑制功效。配体也可以是蛋白质。使得有可能使用许多对接工具来研究两种不同蛋白质之间的相互作用,这些对接工具可用于蛋白质相互作用的基础研究。蛋白质-蛋白质对接是理解蛋白质相互作用和预测尚未通过实验确定的蛋白质复合物结构的关键方法。此外,蛋白质-蛋白质相互作用可以预测靶蛋白的功能和分子的药物样特性。因此,蛋白质对接有助于揭示蛋白质相互作用的见解,也有助于更好地理解分子途径/机制。本章了解蛋白质-蛋白质对接的各种工具(成对和多个),包括他们的方法和作为结果的产出分析。
    Molecular docking is used to anticipate the optimal orientation of a particular molecule to a target to form a stable complex. It makes predictions about the 3D structure of any complex based on the binding characteristics of the ligand and the target receptor usually a protein. It is an exceptionally useful tool, which is used as a model to study how ligands attach to proteins. Docking can also be used for studying the interaction of ligands and proteins to analyze inhibitory efficacy. The ligand may also be a protein, making it possible to study interactions between two different proteins using the numerous docking tools available for basic research on protein interactions. The protein-protein docking is a crucial approach to understanding the protein interactions and predicting the structure of protein complexes that have not yet been experimentally determined. Moreover, the protein-protein interactions can predict the function of target proteins and the drug-like properties of molecules. Therefore, protein docking assists in uncovering insights into protein interactions and also aids in a better understanding of molecular pathways/mechanisms. This chapter comprehends the various tools for protein-protein docking (pairwise and multiple), including their methodologies and analysis of output as results.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    人工智能彻底改变了蛋白质结构预测领域。然而,随着更强大、更复杂的软件的开发,它是可访问性和易用性,而不是功能,正在迅速成为最终用户的限制因素。LazyAF是一个基于GoogleColaboratory的管道,它集成了现有的ColabFoldBATCH软件,以简化中等规模的蛋白质-蛋白质相互作用预测过程。LazyAF用于预测在广泛宿主范围的多药抗性质粒RK2上编码的76种蛋白质的相互作用组,证明了管道提供的易用性和可及性。
    Artificial intelligence has revolutionized the field of protein structure prediction. However, with more powerful and complex software being developed, it is accessibility and ease of use rather than capability that is quickly becoming a limiting factor to end users. LazyAF is a Google Colaboratory-based pipeline which integrates the existing ColabFold BATCH software to streamline the process of medium-scale protein-protein interaction prediction. LazyAF was used to predict the interactome of the 76 proteins encoded on the broad-host-range multi-drug resistance plasmid RK2, demonstrating the ease and accessibility the pipeline provides.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    光谱数据,特别是衍射数据,由于其全面的晶体学信息,对于材料表征至关重要。目前的晶相鉴定,然而,非常耗时。为了应对这一挑战,我们开发了一种基于卷积自注意神经网络(CPICANN)的实时晶体相标识符。对来自23073个不同无机晶体学信息文件的692190个模拟粉末X射线衍射(XRD)图案进行了培训,CPICANN展示了卓越的相位识别能力。在有和没有元素信息的情况下,对模拟的XRD图案进行单相鉴定可产生98.5和87.5%的准确度,分别,优于JADE软件(68.2和38.7%,分别)。在模拟XRD图案上的双相识别达到84.2和51.5%的精度,分别。在实验设置中,CPICANN实现了80%的识别准确率,超过JADE软件(61%)。将CPICANN集成到XRD细化软件中,将大大推进XRD材料表征的尖端技术。
    Spectroscopic data, particularly diffraction data, are essential for materials characterization due to their comprehensive crystallographic information. The current crystallographic phase identification, however, is very time consuming. To address this challenge, we have developed a real-time crystallographic phase identifier based on a convolutional self-attention neural network (CPICANN). Trained on 692 190 simulated powder X-ray diffraction (XRD) patterns from 23 073 distinct inorganic crystallographic information files, CPICANN demonstrates superior phase-identification power. Single-phase identification on simulated XRD patterns yields 98.5 and 87.5% accuracies with and without elemental information, respectively, outperforming JADE software (68.2 and 38.7%, respectively). Bi-phase identification on simulated XRD patterns achieves 84.2 and 51.5% accuracies, respectively. In experimental settings, CPICANN achieves an 80% identification accuracy, surpassing JADE software (61%). Integration of CPICANN into XRD refinement software will significantly advance the cutting-edge technology in XRD materials characterization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    从它的概念来看,X射线晶体学提供了对结构的独特理解,材料的键合和电子状态,which,反过来,解锁检查晶体系统的性质和功能的手段。使用最先进的单晶X射线衍射,随着紫外-可见光谱和DFT计算,Zwolenik等人。[(2024)。IUCrJ,11,519-527]提供了对1,3-二乙酰基芘的结构-光学性质关系的全面研究,其方法越来越多地为非专业实验室所用。
    From its conception, X-ray crystallography has provided a unique understanding of the structure, bonding and electronic state of materials, which, in turn, unlocks a means of examining the properties and function of crystalline systems. Using state-of-the-art single-crystal X-ray diffraction, along with UV-Vis spectroscopy and DFT calculations, Zwolenik et al. [(2024). IUCrJ, 11, 519-527] have provided a comprehensive study of the structure-optical property relationship of 1,3-diacetylpyrene with methodologies that are increasingly accessible to non-specialist laboratories.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号