stereoselectivity

立体选择性
  • 文章类型: Journal Article
    有机卤素化合物是应用化学科学的基石。卤素取代是一种智能的分子设计策略,用于影响反应性,膜通透性和受体相互作用。手性生物受体可以限制卤代配体设计中的立体化学要求。已经报道了直接(但昂贵)催化的立体定向卤化。历史上,尽管立体化学结果受空间参数的影响,但PCl5仍可进行未催化的立体选择性氯化。尽管如此,PCl5与氨基甲酰基(RCONHX)化合物反应机理的立体化学研究从未得到解决。在这里,我们提供了第一个全面的立体化学机理解释,概述了用PCl5卤化氨基甲酰基化合物;关键的区域选择性限制性腈亚胺中间体(8-Z.HCl);取代方式如何影响区域选择性;为什么会遇到恶二唑副产物(P1);影响肼基酰氯(P2)生产的立体电子因素;并发现了消除HCl和POCl3的两种立体选择性限制性并行机制(逐步和协同)。DFT计算,合成方法学优化,X射线证据和实验反应动力学研究证据都支持建议的机制建议(方案2)。最后,我们提供了受机制启发的未来建议,用于将反应立体选择性导向难以捉摸和立体化学上难以接近的(E)-双肼基酰氯,以及两种(E/Z)-立体异构体的潜在关键应用,尤其是在药物化学和蛋白质修饰中。
    Organic halogen compounds are cornerstones of applied chemical sciences. Halogen substitution is a smart molecular design strategy adopted to influence reactivity, membrane permeability and receptor interaction. Chiral bioreceptors may restrict the stereochemical requirements in the halo-ligand design. Straightforward (but expensive) catalyzed stereospecific halogenation has been reported. Historically, PCl5 served access to uncatalyzed stereoselective chlorination although the stereochemical outcomes were influenced by steric parameters. Nonetheless, stereochemical investigation of PCl5 reaction mechanism with carbamoyl (RCONHX) compounds has never been addressed. Herein, we provide the first comprehensive stereochemical mechanistic explanation outlining halogenation of carbamoyl compounds with PCl5; the key regioselectivity-limiting nitrilimine intermediate (8-Z.HCl); how substitution pattern influences regioselectivity; why oxadiazole byproduct (P1) is encountered; stereo-electronic factors influencing the hydrazonoyl chloride (P2) production; and discovery of two stereoselectivity-limiting parallel mechanisms (stepwise and concerted) of elimination of HCl and POCl3. DFT calculations, synthetic methodology optimization, X-ray evidence and experimental reaction kinetics study evidence all supported the suggested mechanism proposal (Scheme 2). Finally, we provide mechanism-inspired future recommendations for directing the reaction stereoselectivity toward elusive and stereochemically inaccessible (E)-bis-hydrazonoyl chlorides along with potentially pivotal applications of both (E/Z)-stereoisomers especially in medicinal chemistry and protein modification.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    一系列新的手性4,5-二氢-1H-[1,2,4]-三唑啉分子,具有β-β-吡喃葡萄糖苷附属物,通过各种肼酰氯和碳水化合物席夫碱之间的1,3-偶极环加成反应合成。通过高分辨率质谱(HRMS)和振动光谱法鉴定了分离的对映体纯的三唑啉(8a-j)。随后,通过NMR光谱技术阐明了它们的溶液结构。衍生物8b的单晶X射线分析为该化合物的3-D结构提供了明确的证据,并揭示了晶格中重要的分子间力。此外,它确认了新生成的立体声中心的(S)配置。研究了选定的目标化合物在60种癌细胞系中的抗肿瘤活性,衍生物8c显示出最高的效力,特别是针对白血病。此外,观察到取代基依赖性抗真菌和抗菌行为。
    A new series of chiral 4,5-dihydro-1H-[1,2,4]-triazoline molecules, featuring a β-ᴅ-glucopyranoside appendage, were synthesized via a 1,3-dipolar cycloaddition reaction between various hydrazonyl chlorides and carbohydrate Schiff bases. The isolated enantiopure triazolines (8a-j) were identified through high-resolution mass spectrometry (HRMS) and vibrational spectroscopy. Subsequently, their solution structures were elucidated through NMR spectroscopic techniques. Single-crystal X-ray analysis of derivative 8b provided definitive evidence for the 3-D structure of this compound and revealed important intermolecular forces in the crystal lattice. Moreover, it confirmed the (S)-configuration at the newly generated stereo-center. Selected target compounds were investigated for anti-tumor activity in 60 cancer cell lines, with derivative 8c showing the highest potency, particularly against leukemia. Additionally, substituent-dependent anti-fungal and anti-bacterial behavior was observed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Strigolactone(SLs)是具有不同作用和结构的植物载脂蛋白类。规范SL,广泛存在,其特征在于其三环内酯(ABC环)的结构变化,根据C环配置分为两种类型。在BC环闭合过程中出现了空间C环构型,生物合成中间体的下游,羧酸(CLA)。大多数植物立体选择性地产生两种典型的SL,例如,番茄(Solanumlycopersicum)产生具有α取向C环的orobanchol。部分理解了驱动SL结构多样化的机制,对功能影响的洞察力有限。此外,立体选择性BC环闭合反应的确切分子机制尚不清楚。我们发现了一种酶,立体选择性BC-环形成因子(SRF),来自drigent蛋白(DIR)家族,特别是DIR-f亚族,其生化功能尚未被表征,使其成为具有α取向C环的立体选择性经典SL生物合成的关键酶。我们首先确认了番茄细胞色素P450SlCYP722C的精确催化功能,先前显示参与orobanchol生物合成[T.Wakabayashietal.,Sci.Adved.5,eax9067(2019)],将CLA转化为18-氧代己酸。然后,我们证明SRF催化18-氧代羧酸的立体选择性BC环闭合反应,形成orobanchol。我们的方法结合了实验和计算技术,包括SRF结构预测和进行分子动力学模拟,提出了基于旋转4π电环反应的催化机理,用于在orobanchol中形成立体选择性BC环。这项研究揭示了植物如何以受控方式产生具有特定立体化学的SL的分子基础。
    Strigolactones (SLs) are plant apocarotenoids with diverse roles and structures. Canonical SLs, widespread and characterized by structural variations in their tricyclic lactone (ABC-ring), are classified into two types based on C-ring configurations. The steric C-ring configuration emerges during the BC-ring closure, downstream of the biosynthetic intermediate, carlactonoic acid (CLA). Most plants produce either type of canonical SLs stereoselectively, e.g., tomato (Solanum lycopersicum) yields orobanchol with an α-oriented C-ring. The mechanisms driving SL structural diversification are partially understood, with limited insight into functional implications. Furthermore, the exact molecular mechanism for the stereoselective BC-ring closure reaction is yet to be known. We identified an enzyme, the stereoselective BC-ring-forming factor (SRF), from the dirigent protein (DIR) family, specifically the DIR-f subfamily, whose biochemical function had not been characterized, making it a key enzyme in stereoselective canonical SL biosynthesis with the α-oriented C-ring. We first confirm the precise catalytic function of the tomato cytochrome P450 SlCYP722C, previously shown to be involved in orobanchol biosynthesis [T. Wakabayashi et al., Sci. Adv. 5, eaax9067 (2019)], to convert CLA to 18-oxocarlactonoic acid. We then show that SRF catalyzes the stereoselective BC-ring closure reaction of 18-oxocarlactonoic acid, forming orobanchol. Our methodology combines experimental and computational techniques, including SRF structure prediction and conducting molecular dynamics simulations, suggesting a catalytic mechanism based on the conrotatory 4π-electrocyclic reaction for the stereoselective BC-ring formation in orobanchol. This study sheds light on the molecular basis of how plants produce SLs with specific stereochemistry in a controlled manner.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    这篇综述分析了生物化学的发展,酶学和生物技术最初令人惊讶。作为有机化学中立体选择性酶的定向进化的一部分,在过去的15年中,建立并完善了选择性多突变变体的部分或完全反卷积的概念。立体选择性变体的早期去卷积实验导致发现突变可以彼此协同或拮抗地相互作用,不仅仅是附加的。稍后,这种现象被证明是普遍的。进行了分子动力学(MD)和量子力学/分子力学(QM/MM)计算,以阐明在进化向上爬升的所有阶段非可加性的起源。完全反褶积的数据可用于构建独特的多维崎岖健身路径景观,比传统的健身景观提供更多的机械洞察力。沿着一条相关的路线,生物化学家长期以来一直在测试在一种酶中引入两个点突变的结果,然后在所谓的双突变体循环中比较各自的双突变体,最初只显示累加效应,但最近也发现了合作和拮抗非累加效应。
    This review analyzes a development in biochemistry, enzymology and biotechnology that originally came as a surprise. As part of directed evolution of stereoselective enzymes in organic chemistry, the concept of partial or complete deconvolution of selective multi-mutational variants was established and refined during the past 15 years. Early deconvolution experiments of stereoselective variants led to the finding that mutations can interact cooperatively or antagonistically with one another, not just additively. Later, this phenomenon was shown to be general. Molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) computations were performed in order to shed light on the origin of non-additivity at all stages of an evolutionary upward climb. Data of complete deconvolution can be used to construct unique multi-dimensional rugged fitness pathway landscapes, which provide more mechanistic insight than traditional fitness landscapes. Along a related line, biochemists have long tested the result of introducing two point mutations in an enzyme for mechanistic reasons, followed by a comparison of the respective double mutant in so-called double mutant cycles, which originally showed only additive effects, but more recently also uncovered cooperative and antagonistic non-additive effects.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    咪康唑是一种以两种对映体存在的手性农药,R-(-)-烯立康唑和S-(+)-烯立康唑,R-对映体比S-对映体活性大得多。先前对酮唑的对映选择性毒理学研究主要集中在简单的环境模型生物上。在这项研究中,我们评估了两种烯立康唑对映体在大鼠和小鼠中的毒代动力学,以提供更全面的风险评估。两种对映异构体在体内立体选择性含量上显示出明显差异。R-(-)-烯立康唑的t1/2为7.06±3.35h,而S-(+)-烯立康唑为9.14±4.60h,表明R-(-)-烯立康唑在体内消除更快。R-(-)-烯立康唑和S-(+)-烯立康唑的排泄率分别为4.08±0.50%和2.68±0.58%,分别,表明R-(-)-烯立康唑的排泄更多。S-(+)-烯立康唑的生物利用度高于R-(-)-烯立康唑(52.19%vs.42.44%)。在胃等组织中也发现了相对较高的丰度。大肠,小肠,盲肠,肝脏,肾,大脑,和睾丸,丰度是R-(-)-烯立康唑的1.71-2.48倍。两种对映体在组织中的选择性降解及其在体内的相互转化均未观察到,这可能表明构型转化对组织中对映异构体含量的差异没有贡献。相反,这种差异主要是由每种对映体对组织的亲和力差异引起的。此外,对土壤中光学纯R-(-)-烯立康唑和S-()-烯立康唑单体之间的相互转化的研究表明,没有相互转化。所有上述结果表明R-(-)-烯立康唑和S-(+)-烯立康唑在体内和土壤中没有相互转化,S-(+)-烯立康唑倾向于具有更大的体内积聚潜力。因此,如果只使用R-(-)-烯立康唑作为杀虫剂,对哺乳动物和环境的负面影响将会减少,这表明在农业中,光学纯R-(-)-烯立康唑的应用可能是更好的策略。
    Diniconazole is a chiral pesticide that exists in two enantiomers, R-(-)-diniconazole and S-(+)-diniconazole, with the R-enantiomer being much more active than the S-enantiomer. Previous enantioselective toxicology studies of diniconazole focused mostly on simple environmental model organisms. In this study, we evaluated the toxicokinetics of the two diniconazole enantiomers in rats and mice to provide a more comprehensive risk assessment. The two enantiomers displayed clear differences in their stereoselective contents in vivo. The t1/2 of R-(-)-diniconazole was 7.06 ± 3.35 h, whereas that of S-(+)-diniconazole was 9.14 ± 4.60 h, indicating that R-(-)-diniconazole was eliminated faster in vivo. The excretion rates of R-(-)-diniconazole and S-(+)-diniconazole were 4.08 ± 0.50 % and 2.68 ± 0.58 %, respectively, indicating more excretion of R-(-)-diniconazole. S-(+)-diniconazole had a higher bioavailability than R-(-)-diniconazole (52.19 % vs. 42.44 %). S-(+)-Diniconazole was also found in relatively high abundance in tissues such as the stomach, large intestine, small intestine, cecum, liver, kidney, brain, and testes, with the abundance being 1.71-2.48-fold that of R-(-)-diniconazole. The selective degradation of both enantiomers in the tissues and their mutual conversion in vivo were not observed, and this could indicate that configuration conversion did not contribute to the differences in the content of enantiomers in the tissues. Instead, such differences were mainly caused by the differences in affinity of each enantiomer for the tissues. Furthermore, investigation of the interconversion between optically pure R-(-)-diniconazole and S-(+)-diniconazole monomers in soil revealed no interconversion. All of the above results indicated no interconversion between R-(-)-diniconazole and S-(+)-diniconazole in vivo and in the soil, and that S-(+)-diniconazole tends to have a greater potential to accumulate in vivo. Thus, if only R-(-)-diniconazole is used as a pesticide, the negative impact on mammals and the environment will be reduced, suggesting that in agriculture, the application of optically pure R-(-)-diniconazole may be a better strategy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    药物组合和再利用最近提供了有希望的替代方案,以应对日益严峻的抗生素耐药性和破坏传统抗菌策略的天然药物分子库的消耗问题。Closantel,一种有效的佐剂,逆转革兰阴性菌的抗生素耐药性。在这里,通过单独的对映体研究,提出了康桑泰尔的联合抗菌对映选择性。尽管产生了意想不到的差异,两种氯桑泰尔对映体(R,S)在体外和体内都增加了对革兰氏阴性细菌的粘菌素活性。R-closantel和S-closantel联合粘菌素对铜绿假单胞菌的抑菌浓度指数,肺炎克雷伯菌,和大肠杆菌的范围分别为0.0087至0.5004和0.0117至0.5312。使用生长抑制测定和时间杀伤曲线进一步证明了这种差异。机械上,较高的细胞内浓度的R-CLO在增强组合的抗微生物活性方面更有效。小鼠皮肤感染模型证实了closantel的协同立体选择性。这一发现为开发精准药物和遏制增加的抗生素耐药性提供了新的见解。
    Drug combinations and repurposing have recently provided promising alternatives to cope with the increasingly severe issue of antibiotic resistance and depletion of natural drug molecular repertoires that undermine traditional antibacterial strategies. Closantel, an effective adjuvant, reverses antibiotic resistance in gram-negative bacteria. Herein, the combined antibacterial enantioselectivity of closantel is presented through separate enantiomer studies. Despite yielding unexpected differences, two closantel enantiomers (R, S) increased colistin activity against gram-negative bacteria both in vitro and in vivo. The fractional inhibitory concentration indices of R-closantel and S-closantel combined with colistin against Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli ranged from 0.0087 to 0.5004 and from 0.0117 to 0.5312, respectively. This difference was further demonstrated using growth inhibition assays and time-killing curves. Mechanistically, a higher intracellular concentration of R-CLO is more effective in enhancing the antimicrobial activity of combination. A mouse cutaneous infection model confirmed the synergistic stereoselectivity of closantel. This discovery provides novel insights for developing precision medication and containment of increasing antibiotic resistance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Baeyer-Villiger单加氧酶属于黄素结合蛋白家族,催化酮的Baeyer-Villiger(BV)氧化产生内酯或酯,它们是药物或可持续材料的重要中间体。具有中等热稳定性的Thermobifidafusca的苯基丙酮单加氧酶(PAMO)催化芳基酮底物的氧化,但受限于高特异性和窄的底物范围。在本研究中,我们通过循环交换进行循环优化,然后进行集中的饱和诱变,以进化出能够催化环己酮和环丁酮衍生物的区域选择性BV氧化并形成正常或异常酯或内酯的PAMO突变体。我们进一步调节PAMO以增加对映选择性。晶体结构研究表明,旋转发生在NADP结合域中,高B因子区域主要分布在催化袋残基中。计算分析进一步揭示了催化袋中的动态特性和重塑的氢键相互作用网络,这对底物结合更有利。我们的研究为研究酶-底物适应提供了有用的见解。
    Baeyer-Villiger monooxygenases belong to a family of flavin-binding proteins that catalyze the Baeyer-Villiger (BV) oxidation of ketones to produce lactones or esters, which are important intermediates in pharmaceuticals or sustainable materials. Phenylacetone monooxygenase (PAMO) from Thermobifida fusca with moderate thermostability catalyzes the oxidation of aryl ketone substrates, but is limited by high specificity and narrow substrate scope. In the present study, we applied loop optimization by loop swapping followed by focused saturation mutagenesis in order to evolve PAMO mutants capable of catalyzing the regioselective BV oxidation of cyclohexanone and cyclobutanone derivatives with formation of either normal or abnormal esters or lactones. We further modulated PAMO to increase enantioselectivity. Crystal structure studies indicate that rotation occurs in the NADP-binding domain and that the high B-factor region is predominantly distributed in the catalytic pocket residues. Computational analyses further revealed dynamic character in the catalytic pocket and reshaped hydrogen bond interaction networks, which is more favorable for substrate binding. Our study provides useful insights for studying enzyme-substrate adaptations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    (Z)-烯烃是有用的合成子,但热力学上不如它们的(E)-异构体稳定,并且通常更难以制备。由于固有的区域和立体选择性问题,1,4-杂-双官能化(Z)-烯烃的合成特别具有挑战性。在这里,我们展示了一个将军,化学选择性和直接合成(Z)-2-丁烯-1,4-二醇单酯。该方案在Pd催化的脱羧酰氧基化方案中操作,该方案涉及在温和且操作上有吸引力的条件下作为反应伙伴的碳酸乙烯酯(VEC)和各种羧酸。新开发的方法允许以良好的产率和优异的区域选择性和立体选择性获得(Z)-2-丁烯-1,4-二醇单酯的结构多样化池。获得的(Z)-2-丁烯-1,4-二醇单酯的各种合成转化表明,这些合成子如何极大地用于快速分散这些形式的去对称(Z)烯烃的投资组合。
    (Z)-alkenes are useful synthons but thermodynamically less stable than their (E)-isomers and typically more difficult to prepare. The synthesis of 1,4-hetero-bifunctionalized (Z)-alkenes is particularly challenging due to the inherent regio- and stereoselectivity issues. Herein we demonstrate a general, chemoselective and direct synthesis of (Z)-2-butene-1,4-diol monoesters. The protocol operates within a Pd-catalyzed decarboxylative acyloxylation regime involving vinyl ethylene carbonates (VECs) and various carboxylic acids as the reaction partners under mild and operationally attractive conditions. The newly developed process allows access to a structurally diverse pool of (Z)-2-butene-1,4-diol monoesters in good yields and with excellent regio- and stereoselectivity. Various synthetic transformations of the obtained (Z)-2-butene-1,4-diol monoesters demonstrate how these synthons are of great use to rapidly diversify the portfolio of these formal desymmetrized (Z)-alkenes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    手性表氯醇(ECH)是一种有吸引力的中间体,用于制备手性药物和化学品。在卤代醇脱卤酶(HHDH)催化下,使用1,3-二氯-2-丙醇(1,3-DCP)不对称合成手性ECH被认为是一种可行的方法。然而,反向开环反应导致手性ECH的光学纯度低,严重制约了HHDHs的工业应用。在本研究中,一种新的选择性构象调整策略与工程HheCPS开发调节动力学参数的正向和反向反应,基于位点饱和突变和分子模拟分析。HheCPS突变体E85P的构建具有底物口袋中(S)-ECH构象的可标记变化,并且对1,3-DCP与酶之间的相互作用有轻微影响,这导致了逆反应的动力学减速。与HheCPS相比,逆反应的催化效率(kcat(S)-ECH/Km(S)-ECH)降至0.23倍(从0.13降至0.03mM-1s-1),而正向反应的催化效率(kcat(1,3-DCP)/Km(1,3-DCP))仅从0.83降至0.71mM-1s-1。以40mM1,3-DCP为底物,HheCPSE85P催化合成(S)-ECH,收率高达55.35%,e.e。从92.54增加到>99%。我们的工作为理解立体选择性催化机理以及手性环氧化物的绿色制造提供了有效的方法。
    Chiral epichlorohydrin (ECH) is an attractive intermediate for chiral pharmaceuticals and chemicals preparation. The asymmetric synthesis of chiral ECH using 1,3-dicholoro-2-propanol (1,3-DCP) catalyzed by a haloalcohol dehalogenase (HHDH) was considered as a feasible approach. However, the reverse ring opening reaction caused low optical purity of chiral ECH, thus severely restricts the industrial application of HHDHs. In the present study, a novel selective conformation adjustment strategy was developed with an engineered HheCPS to regulate the kinetic parameters of the forward and reverse reactions, based on site saturation mutation and molecular simulation analysis. The HheCPS mutant E85P was constructed with a markable change in the conformation of (S)-ECH in the substrate pocket and a slight impact on the interaction between 1,3-DCP and the enzyme, which resulted in the kinetic deceleration of the reverse reactions. Compared with HheCPS, the catalytic efficiency (kcat(S)-ECH/Km(S)-ECH) of the reversed reaction dropped to 0.23-fold (from 0.13 to 0.03 mM-1 s-1), while the catalytic efficiency (kcat(1,3-DCP)/Km(1,3-DCP)) of the forward reaction only reduced from 0.83 to 0.71 mM-1 s-1. With 40 mM 1,3-DCP as substrate, HheCPS E85P catalyzed the synthesis of (S)-ECH with the yield up to 55.35% and the e.e. increased from 92.54 to >99%. Our work provided an effective approach for understanding the stereoselective catalytic mechanism as well as the green manufacturing of chiral epoxides.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    羧酸酯酶(CarEs)是Ⅰ期重要的解毒酶系统,参与杀虫剂抗性。在我们之前的研究中,SlCarE054,一种来自鳞翅目类的CarEs基因,在拟除虫菊酯和有机磷酸酯抗性群体中被上调。通过qRT-PCR在对拟除虫菊酯和有机磷酸酯具有抗性的两个野外收集的斜纹夜蛾(鳞翅目:夜蛾科)种群中证实了其过度表达。时空表达成果显示,SlCarE054在蛹期和消化组织中肠高表达。为了进一步探讨其在拟除虫菊酯和有机磷酸酯耐药性中的作用,通过UPLC测定其对杀虫剂的代谢活性。其重组蛋白对氯氟氰菊酯和氰戊菊酯具有显著的代谢活性,但不是辛硫磷或毒死蜱。SlCarE054对β-氯氰菊酯的代谢活性表现出立体选择性,对θ-氯氰菊酯的代谢活性高于对映体α-氯氰菊酯。β-氯氰菊酯的代谢产物被鉴定为3-苯氧基苯甲醛。进一步的建模和对接分析表明,氯氰菊酯,氯氰菊酯和氰戊菊酯可以与SlCarE054的3D结构的催化三联体结合。氯氰菊酯与SlCarE054的相互作用也显示出最低的结合能。我们的工作提供了SlCarE054在斜纹链球菌对氯氰菊酯的抗性中起作用的证据。
    Carboxylesterases (CarEs) is an important detoxification enzyme system in phase Ⅰ participating in insecticides resistance. In our previous study, SlCarE054, a CarEs gene from lepidoptera class, was screened out to be upregulated in a pyrethroids and organophosphates resistant population. Its overexpression was verified in two field-collected populations of Spodoptera litura (Lepidoptera: Noctuidae) resistant to pyrethroids and organophosphates by qRT-PCR. Spatiotemporal expression results showed that SlCarE054 was highly expressed in the pupae stage and the digestive tissue midgut. To further explore its role in pyrethroids and organophosphates resistance, its metabolism activity to insecticides was determined by UPLC. Its recombinant protein showed significant metabolism activity to cyhalothrin and fenvalerate, but not to phoxim or chlorpyrifos. The metabolic activity of SlCarE054 to β-cypermethrin showed stereoselectivity, with higher metabolic activity to θ-cypermethrin than the enantiomer α-cypermethrin. The metabolite of β-cypermethrin was identified as 3-phenoxybenzaldehyde. Further modelling and docking analysis indicated that β-cypermethrin, cyhalothrin and fenvalerate could bind with the catalytic triad of the 3D structure of SlCarE054. The interaction of β-cypermethrin with SlCarE054 also showed the lowest binding energy. Our work provides evidence that SlCarE054 play roles in β-cypermethrin resistance in S. litura.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号