ssDNA gaps

ssDNA 缺口
  • 文章类型: Journal Article
    基因组不稳定性的一个关键但经常被忽视的组成部分是在没有功能同源重组(HR)蛋白的情况下,在DNA复制过程中出现单链DNA(ssDNA)缺口。例如RAD51和BRCA1/2。原核生物的研究揭示了RAD51细菌直系同源物的双重作用,RecA,在HR和复制叉的保护中,强调其在防止ssDNA缺口形成方面的重要作用,这对细胞活力至关重要。这种现象在缺乏HR的真核细胞中得到证实,其中观察到新合成的DNA中ssDNA缺口的形成及其随后通过MRE11核酸酶的加工。没有功能性HR蛋白,细胞采用替代的ssDNA间隙填充机制来确保存活,尽管这种补偿性反应会损害基因组的稳定性。一个值得注意的例子是跨病变合成(TLS)聚合酶POLζ的参与,与修复蛋白POLθ一起,抑制复制性ssDNA缺口。持续的ssDNA缺口可能会导致复制叉崩溃,染色体异常,和细胞死亡,这有助于癌症进展和对治疗的抵抗。阐明避免ssDNA缺口和保护复制叉的过程对于通过利用这些途径中癌细胞的脆弱性来增强癌症治疗方法至关重要。
    A key but often neglected component of genomic instability is the emergence of single-stranded DNA (ssDNA) gaps during DNA replication in the absence of functional homologous recombination (HR) proteins, such as RAD51 and BRCA1/2. Research in prokaryotes has shed light on the dual role of RAD51\'s bacterial ortholog, RecA, in HR and the protection of replication forks, emphasizing its essential role in preventing the formation of ssDNA gaps, which is vital for cellular viability. This phenomenon was corroborated in eukaryotic cells deficient in HR, where the formation of ssDNA gaps within newly synthesized DNA and their subsequent processing by the MRE11 nuclease were observed. Without functional HR proteins, cells employ alternative ssDNA gap-filling mechanisms to ensure survival, though this compensatory response can compromise genomic stability. A notable example is the involvement of the translesion synthesis (TLS) polymerase POLζ, along with the repair protein POLθ, in the suppression of replicative ssDNA gaps. Persistent ssDNA gaps may result in replication fork collapse, chromosomal anomalies, and cell death, which contribute to cancer progression and resistance to therapy. Elucidating the processes that avert ssDNA gaps and safeguard replication forks is critical for enhancing cancer treatment approaches by exploiting the vulnerabilities of cancer cells in these pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    替莫唑胺(TMZ)是一种甲基化剂,用作胶质母细胞瘤化疗的一线药物。然而,癌细胞最终获得抗性,需要开发TMZ增强治疗剂。TMZ诱导几种DNA碱基加合物,包括O6-MEG,3-meA,还有7-meG.TMZ的细胞毒性源于这些加合物直接(3-meA)或间接(O6-meG)损害DNA复制的能力。虽然TMZ毒性通常归因于O6-meG,其它烷基化碱基可以是同样重要的,这取决于处理的细胞的各种DNA修复途径的状态。在这篇小型综述中,我们强调了区分TMZ敏感性胶质母细胞瘤的必要性,它们不表达甲基鸟嘌呤-DNA甲基转移酶(MGMT),并被O6-meG/T对的错配修复(MMR)无效循环杀死,vs.TMZ耐药MGMT阳性或MMR阴性胶质母细胞瘤,其在治疗过程中被选择并且仅在较高TMZ剂量下被复制阻断3-meA杀死。这两种类型的细胞可以通过抑制不同的DNA修复途径而被TMZ致敏。然而,在这两种情况下,有毒的中间体似乎是ssDNA缺口,在BRCA缺陷型癌症中也发现了一种脆弱性。PARP抑制剂(PARPi),最初被开发用于通过合成致死性来治疗BRCA1/2缺陷型癌症,在临床试验中重新使用以增强TMZ的作用。我们讨论了我们对TMZ毒性的遗传决定因素的理解的最新进展如何通过抑制PARP1和其他参与烷基化损伤修复的酶(例如,APE1)。
    Temozolomide (TMZ) is a methylating agent used as the first-line drug in the chemotherapy of glioblastomas. However, cancer cells eventually acquire resistance, necessitating the development of TMZ-potentiating therapy agents. TMZ induces several DNA base adducts, including O 6 -meG, 3-meA, and 7-meG. TMZ cytotoxicity stems from the ability of these adducts to directly (3-meA) or indirectly (O 6 -meG) impair DNA replication. Although TMZ toxicity is generally attributed to O 6 -meG, other alkylated bases can be similarly important depending on the status of various DNA repair pathways of the treated cells. In this mini-review we emphasize the necessity to distinguish TMZ-sensitive glioblastomas, which do not express methylguanine-DNA methyltransferase (MGMT) and are killed by the futile cycle of mismatch repair (MMR) of the O 6 -meG/T pairs, vs. TMZ-resistant MGMT-positive or MMR-negative glioblastomas, which are selected in the course of the treatment and are killed only at higher TMZ doses by the replication-blocking 3-meA. These two types of cells can be TMZ-sensitized by inhibiting different DNA repair pathways. However, in both cases, the toxic intermediates appear to be ssDNA gaps, a vulnerability also seen in BRCA-deficient cancers. PARP inhibitors (PARPi), which were initially developed to treat BRCA1/2-deficient cancers by synthetic lethality, were re-purposed in clinical trials to potentiate the effects of TMZ. We discuss how the recent advances in our understanding of the genetic determinants of TMZ toxicity might lead to new approaches for the treatment of glioblastomas by inhibiting PARP1 and other enzymes involved in the repair of alkylation damage (e.g., APE1).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    DNA中碱基的改变构成基因组不稳定性的主要来源。据信碱基改变引发碱基切除修复(BER),产生干扰DNA复制的DNA修复中间体。这里,我们显示基因组尿嘧啶,一种常见的碱基改变,诱导DNA复制应激(RS)而不被BER处理。在没有尿嘧啶DNA糖基化酶(UNG)的情况下,基因组尿嘧啶积累到高水平,DNA复制叉慢下来,PrimPol介导的再灌注增强,在新生DNA中产生单链缺口。UNG缺陷细胞中的ATR抑制阻断尿嘧啶诱导的间隙的修复,增加复制叉崩溃和细胞死亡。值得注意的是,一部分癌细胞上调UNG2以抑制基因组尿嘧啶并限制RS,这些癌细胞对ATR抑制剂和增加基因组尿嘧啶的药物共同治疗过敏。这些结果揭示了未加工的基因组尿嘧啶作为RS的意外来源和癌细胞的可靶向脆弱性。
    Alterations of bases in DNA constitute a major source of genomic instability. It is believed that base alterations trigger base excision repair (BER), generating DNA repair intermediates interfering with DNA replication. Here, we show that genomic uracil, a common type of base alteration, induces DNA replication stress (RS) without being processed by BER. In the absence of uracil DNA glycosylase (UNG), genomic uracil accumulates to high levels, DNA replication forks slow down, and PrimPol-mediated repriming is enhanced, generating single-stranded gaps in nascent DNA. ATR inhibition in UNG-deficient cells blocks the repair of uracil-induced gaps, increasing replication fork collapse and cell death. Notably, a subset of cancer cells upregulates UNG2 to suppress genomic uracil and limit RS, and these cancer cells are hypersensitive to co-treatment with ATR inhibitors and drugs increasing genomic uracil. These results reveal unprocessed genomic uracil as an unexpected source of RS and a targetable vulnerability of cancer cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    穿透DNA合成(TLS)是细胞用来克服整个DNA复制过程中遇到的损伤的DNA损伤耐受途径。在复制应力期间,癌细胞显示对TLS蛋白的依赖性增加,用于细胞存活和化学抗性。TLS蛋白已被描述为参与各种DNA修复途径。TLS的主要新兴作用之一是单链DNA(ssDNA)填隙,主要是在遇到病变时PrimPol的再灌注活动之后。相反,TLS抑制ssDNA间隙积累被认为是癌细胞逃避化疗药物毒性的一种机制,特别是在BRCA缺陷细胞中。因此,TLS抑制正在成为DNA修复缺陷型肿瘤的潜在治疗方案。
    Translesion DNA synthesis (TLS) is a DNA damage tolerance pathway utilized by cells to overcome lesions encountered throughout DNA replication. During replication stress, cancer cells show increased dependency on TLS proteins for cellular survival and chemoresistance. TLS proteins have been described to be involved in various DNA repair pathways. One of the major emerging roles of TLS is single-stranded DNA (ssDNA) gap-filling, primarily after the repriming activity of PrimPol upon encountering a lesion. Conversely, suppression of ssDNA gap accumulation by TLS is considered to represent a mechanism for cancer cells to evade the toxicity of chemotherapeutic agents, specifically in BRCA-deficient cells. Thus, TLS inhibition is emerging as a potential treatment regimen for DNA repair-deficient tumors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    POLθ促进同源重组(HR)缺陷型肿瘤中由折叠叉引起的DNA双链断裂(DSB)的修复。POLθ的失活导致合成致死性,同时丧失HR基因BRCA1/2,从而诱导复制不足的DNA积累。然而,目前尚不清楚POLθ依赖性DNA复制是否能预防HR缺乏相关致死性.这里,我们分离了非洲爪狼POLθ,并表明它处理停滞的冈崎碎片,通过电子显微镜直接可视化,从而在不存在RAD51的情况下抑制ssDNA缺口在滞后链上的积累并防止叉逆转。对POLθDNA聚合酶活性的抑制使叉位不受保护,使其能够被MRE11-NBS1-CtIP内切核酸酶切割,产生具有不对称单端DSB的破碎叉,阻碍BRCA2缺陷细胞的存活。这些结果揭示了POLθ依赖性基因组保护功能,可防止停滞的叉子破裂,并突出了对POLθ抑制剂的可能抗性机制。
    POLθ promotes repair of DNA double-strand breaks (DSBs) resulting from collapsed forks in homologous recombination (HR) defective tumors. Inactivation of POLθ results in synthetic lethality with the loss of HR genes BRCA1/2, which induces under-replicated DNA accumulation. However, it is unclear whether POLθ-dependent DNA replication prevents HR-deficiency-associated lethality. Here, we isolated Xenopus laevis POLθ and showed that it processes stalled Okazaki fragments, directly visualized by electron microscopy, thereby suppressing ssDNA gaps accumulating on lagging strands in the absence of RAD51 and preventing fork reversal. Inhibition of POLθ DNA polymerase activity leaves fork gaps unprotected, enabling their cleavage by the MRE11-NBS1-CtIP endonuclease, which produces broken forks with asymmetric single-ended DSBs, hampering BRCA2-defective cell survival. These results reveal a POLθ-dependent genome protection function preventing stalled forks rupture and highlight possible resistance mechanisms to POLθ inhibitors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    乳腺癌1型易感性蛋白(BRCA1)缺失的肿瘤是同源重组(HR)缺陷的,并且对聚(ADP-核糖)聚合酶抑制剂(PARPi)过敏。然而,这些肿瘤可能通过失去DNA双链断裂的末端保护而恢复HR并获得PARPi抗性.我们发现,核DNA连接酶III的丢失通过暴露复制后的单链DNA(ssDNA)缺口,使HR恢复的BRCA1缺陷细胞对PARPi重新敏感。我们的工作,和其他人的,确定ssDNA缺口是PARPi反应的关键决定因素。
    Tumors with loss of breast cancer type 1 susceptibility protein (BRCA1) are homologous recombination (HR) deficient and hypersensitive to poly(ADP-ribose) polymerase inhibitors (PARPi). However, these tumors may restore HR and acquire PARPi resistance via loss of end-protection of DNA double-strand breaks. We found that loss of nuclear DNA ligase III resensitizes HR-restored BRCA1-deficient cells to PARPi by exposing post-replicative single-stranded DNA (ssDNA) gaps. Our work, and that of others, identifies ssDNA gaps as a key determinant of PARPi response.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    单链DNA缺口是在复制胁迫条件下积累在新合成的DNA上的常见结构。这些单链DNA缺口的鉴定有助于揭示允许DNA复制机制跳过内在复制障碍或DNA损伤的机制。DNA纤维测定法提供了一种必不可少的工具,用于以单分子分辨率在全基因组范围内检测DNA复制叉动力学的扰动,以及与S1核酸酶结合使用时识别单链缺口的存在。然而,电子显微镜是唯一允许实际可视化和定位复制叉上单链DNA缺口的技术。本章提供了通过电子显微镜观察复制叉处单链DNA缺口的详细方法,包括培养的哺乳动物细胞的补骨脂素交联,提取基因组DNA,最后富集复制中间体,然后将DNA散布和铂旋转遮蔽到网格上。还讨论了这些间隙的鉴定和分析以及电子显微镜相对于DNA纤维技术的优缺点。
    Single-stranded DNA gaps are frequent structures that accumulate on newly synthesized DNA under conditions of replication stress. The identification of these single-stranded DNA gaps has been instrumental to uncover the mechanisms that allow the DNA replication machinery to skip intrinsic replication obstacles or DNA lesions. DNA fiber assays provide an essential tool for detecting perturbations in DNA replication fork dynamics genome-wide at single molecule resolution along with identifying the presence of single-stranded gaps when used in combination with S1 nuclease. However, electron microscopy is the only technique allowing the actual visualization and localization of single-stranded DNA gaps on replication forks. This chapter provides a detailed method for visualizing single-stranded DNA gaps at the replication fork by electron microscopy including psoralen cross-linking of cultured mammalian cells, extraction of genomic DNA, and finally enrichment of replication intermediates followed by spreading and platinum rotary shadowing of the DNA onto grids. Discussion on identification and analysis of these gaps as well as on the advantages and disadvantages of electron microscopy relative to the DNA fiber technique is also included.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    PRIMPOL再灌注允许DNA复制跳过DNA损伤,导致ssDNA缺口。必须填补这些空白以保持基因组稳定性。使用DNA纤维方法直接监测间隙填充,我们研究了在PRIMPOL表达增加或由于SMARCAL1失活或PARP抑制而导致复制叉逆转缺陷时,填补顺铂处理细胞产生的ssDNA缺口的复制后机制.我们发现,依赖于E3泛素连接酶RAD18,PCNA单尿素化的机制,REV1和POLζ跨损伤合成聚合酶促进G2的间隙填充。E2结合酶UBC13,RAD51重组酶,而REV1-POLζ则负责填补S的缺口,这表明时间上不同的间隙填充途径在整个细胞周期中起作用。此外,我们发现,BRCA1和BRCA2通过限制MRE11活性促进间隙填充,同时靶向叉逆转和间隙填充可增强BRCA缺陷细胞的化学敏感性.
    PRIMPOL repriming allows DNA replication to skip DNA lesions, leading to ssDNA gaps. These gaps must be filled to preserve genome stability. Using a DNA fiber approach to directly monitor gap filling, we studied the post-replicative mechanisms that fill the ssDNA gaps generated in cisplatin-treated cells upon increased PRIMPOL expression or when replication fork reversal is defective because of SMARCAL1 inactivation or PARP inhibition. We found that a mechanism dependent on the E3 ubiquitin ligase RAD18, PCNA monoubiquitination, and the REV1 and POLζ translesion synthesis polymerases promotes gap filling in G2. The E2-conjugating enzyme UBC13, the RAD51 recombinase, and REV1-POLζ are instead responsible for gap filling in S, suggesting that temporally distinct pathways of gap filling operate throughout the cell cycle. Furthermore, we found that BRCA1 and BRCA2 promote gap filling by limiting MRE11 activity and that simultaneously targeting fork reversal and gap filling enhances chemosensitivity in BRCA-deficient cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Inhibitors of poly(ADP-ribose) (PAR) polymerase (PARPi) have entered the clinic for the treatment of homologous recombination (HR)-deficient cancers. Despite the success of this approach, preclinical and clinical research with PARPi has revealed multiple resistance mechanisms, highlighting the need for identification of novel functional biomarkers and combination treatment strategies. Functional genetic screens performed in cells and organoids that acquired resistance to PARPi by loss of 53BP1 identified loss of LIG3 as an enhancer of PARPi toxicity in BRCA1-deficient cells. Enhancement of PARPi toxicity by LIG3 depletion is dependent on BRCA1 deficiency but independent of the loss of 53BP1 pathway. Mechanistically, we show that LIG3 loss promotes formation of MRE11-mediated post-replicative ssDNA gaps in BRCA1-deficient and BRCA1/53BP1 double-deficient cells exposed to PARPi, leading to an accumulation of chromosomal abnormalities. LIG3 depletion also enhances efficacy of PARPi against BRCA1-deficient mammary tumors in mice, suggesting LIG3 as a potential therapeutic target.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    BRCA1/2突变肿瘤细胞表现出升高的突变负担,其病因尚不清楚。这里,我们报告说,由于DNA启动酶-聚合酶PRIMPOL的重新引导,这些细胞在不受干扰的DNA复制过程中积累了ssDNA缺口和自发突变。间隙积累需要DNA糖基化酶SMUG1,并且由于跨损伤合成(TLS)因子RAD18的消耗或小分子JH-RE-06对易错TLS聚合酶复合物REV1-Polz的抑制而加剧。BRCA1/2缺陷细胞的JH-RE-06处理导致突变率降低和PRIMPOL和SMUG1依赖性生存力丧失。通过细胞和动物研究,我们证明JH-RE-06对HR缺乏的癌细胞具有优先毒性。此外,JH-RE-06对PARP抑制剂(PARPi)抗性BRCA1突变细胞仍然有效,并显示交联剂或PARPi的加性毒性。总的来说,这些研究确定了REV1-Polζ在BRCA1/2突变细胞中的保护和诱变作用,并为使用REV1-Polζ抑制剂治疗BRCA1/2突变肿瘤提供了理论基础.
    BRCA1/2 mutant tumor cells display an elevated mutation burden, the etiology of which remains unclear. Here, we report that these cells accumulate ssDNA gaps and spontaneous mutations during unperturbed DNA replication due to repriming by the DNA primase-polymerase PRIMPOL. Gap accumulation requires the DNA glycosylase SMUG1 and is exacerbated by depletion of the translesion synthesis (TLS) factor RAD18 or inhibition of the error-prone TLS polymerase complex REV1-Polζ by the small molecule JH-RE-06. JH-RE-06 treatment of BRCA1/2-deficient cells results in reduced mutation rates and PRIMPOL- and SMUG1-dependent loss of viability. Through cellular and animal studies, we demonstrate that JH-RE-06 is preferentially toxic toward HR-deficient cancer cells. Furthermore, JH-RE-06 remains effective toward PARP inhibitor (PARPi)-resistant BRCA1 mutant cells and displays additive toxicity with crosslinking agents or PARPi. Collectively, these studies identify a protective and mutagenic role for REV1-Polζ in BRCA1/2 mutant cells and provide the rationale for using REV1-Polζ inhibitors to treat BRCA1/2 mutant tumors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号