splicing inhibition

  • 文章类型: Journal Article
    受精卵的分裂产生全能卵裂球。在人类8细胞卵裂球中,发生合子基因组激活(ZGA)以启动个体发育程序。然而,在人体细胞中捕获和维持全能性构成了重大挑战。这里,我们实现了培养人类全能卵裂球样细胞(hTBLC)。我们发现剪接抑制可以将人类多能干细胞瞬时重编程为ZGA样细胞(ZLCs),其随后在长期传代后转变为稳定的hTBLC。与报道的8细胞样细胞(8CLC)不同,ZLC和hTBLC都广泛沉默多能基因。有趣的是,ZLCs激活一组特定的ZGA特异性基因,和hTBLC富含前ZGA特异性基因。在自发分化过程中,hTBLC重新进入中间ZLC阶段,并进一步产生外爆炸(EPI)-,原始内胚层(PrE)-,和类似滋养外胚层(TE)的谱系,有效地概括了人类植入前的发育。具有胚胎和胚胎外发育能力,hTBLC可以在体外自主产生胚泡样结构而没有外部细胞信号传导。总之,我们的研究提供了人类细胞全能性的关键标准和见解.
    The cleavage of zygotes generates totipotent blastomeres. In human 8-cell blastomeres, zygotic genome activation (ZGA) occurs to initiate the ontogenesis program. However, capturing and maintaining totipotency in human cells pose significant challenges. Here, we realize culturing human totipotent blastomere-like cells (hTBLCs). We find that splicing inhibition can transiently reprogram human pluripotent stem cells into ZGA-like cells (ZLCs), which subsequently transition into stable hTBLCs after long-term passaging. Distinct from reported 8-cell-like cells (8CLCs), both ZLCs and hTBLCs widely silence pluripotent genes. Interestingly, ZLCs activate a particular group of ZGA-specific genes, and hTBLCs are enriched with pre-ZGA-specific genes. During spontaneous differentiation, hTBLCs re-enter the intermediate ZLC stage and further generate epiblast (EPI)-, primitive endoderm (PrE)-, and trophectoderm (TE)-like lineages, effectively recapitulating human pre-implantation development. Possessing both embryonic and extraembryonic developmental potency, hTBLCs can autonomously generate blastocyst-like structures in vitro without external cell signaling. In summary, our study provides key criteria and insights into human cell totipotency.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肺癌的死亡率主要与化疗后复发有关,由休眠癌细胞的重新激活驱动。尽管这些重新激活的细胞在癌症复发和转移中起着关键作用,控制其治疗选择的分子机制仍然知之甚少。在这项研究中,我们通过将PacBio单分子实时(SMRT)测序与短读数IlluminaRNA-seq相结合进行了综合分析。我们的研究表明,顺铂诱导的休眠和重新激活的癌细胞表现出明显的基因转录本和可变剪接事件的减少。特别是,发现差异选择性剪接事件与差异表达基因重叠,并富含与细胞周期和细胞分裂相关的基因。利用ENCORI数据库和相关分析,我们确定了关键的剪接因素,包括SRSF7、SRSF3、PRPF8和HNRNPC,以及RNA解旋酶,如EIF4A3,DDX39A,DDX11和BRIP1与观察到的可变剪接减少和随后的基因表达减少有关。我们的研究表明,肺癌细胞通过减少特定剪接因子和RNA解旋酶介导的选择性剪接事件来减少基因转录本。这些发现提供了对休眠癌细胞的治疗选择和再激活的潜在分子机制的见解。这一发现为开发旨在预防化疗后癌症复发的治疗策略开辟了潜在途径。
    Lung cancer\'s mortality is predominantly linked to post-chemotherapy recurrence, driven by the reactivation of dormant cancer cells. Despite the critical role of these reactivated cells in cancer recurrence and metastasis, the molecular mechanisms governing their therapeutic selection remain poorly understood. In this study, we conducted an integrative analysis by combining PacBio single molecule real-time (SMRT) sequencing with short reads Illumina RNA-seq. Our study revealed that cisplatin-induced dormant and reactivated cancer cells exhibited a noteworthy reduction in gene transcripts and alternative splicing events. Particularly, the differential alternative splicing events were found to be overlapping with the differentially expression genes and enriched in genes related to cell cycle and cell division. Utilizing ENCORI database and correlation analysis, we identified key splicing factors, including SRSF7, SRSF3, PRPF8, and HNRNPC, as well as RNA helicase such as EIF4A3, DDX39A, DDX11, and BRIP1, which were associated with the observed reduction in alternative splicing and subsequent decrease in gene expression. Our study demonstrated that lung cancer cells reduce gene transcripts through diminished alternative splicing events mediated by specific splicing factors and RNA helicase in response to the chemotherapeutic stress. These findings provide insights into the molecular mechanisms underlying the therapeutic selection and reactivation of dormant cancer cells. This discovery opens a potential avenue for the development of therapeutic strategies aimed at preventing cancer recurrence following chemotherapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Splicing and alternative splicing of pre-mRNA are key sources in the formation of diversity in the human proteome. These processes have a central role in the regulation of the gene expression pathway. Yet, how spliceosomes are assembled on a multi-intronic pre-mRNA is at present not well understood. To study the spliceosomes assembled in vivo on transcripts with variable number of introns, we examined a series of three related transcripts derived from the β-globin gene, where two transcript types contained increasing number of introns, while one had only an exon. Each transcript had multiple MS2 sequence repeats that can be bound by the MS2 coat protein. Using our protocol for isolation of endogenous spliceosomes under native conditions from cell nuclei, we show that all three transcripts are found in supraspliceosomes - 21 MDa dynamic complexes, sedimenting at 200S in glycerol gradients, and composed of four native spliceosomes connected by the transcript. Affinity purification of complexes assembled on the transcript with most introns (termed E6), using the MS2 tag, confirmed the assembly of E6 in supraspliceosomes with components such as Sm proteins and PSF. Furthermore, splicing inhibition by spliceostatin A did not inhibit the assembly of supraspliceosomes on the E6 transcript, yet increased the percentage of E6 pre-mRNA supraspliceosomes. These findings were corroborated in intact cells, using RNA FISH to detect the MS2-tagged E6 mRNA, together with GFP-tagged splicing factors, showing the assembly of splicing factors SRSF2, U1-70K, and PRP8 onto the E6 transcripts under normal conditions and also when splicing was inhibited. This study shows that different transcripts with different number of introns, or lacking an intron, are assembled in supraspliceosomes even when splicing is inhibited. This assembly starts at the site of transcription and can continue during the life of the transcript in the nucleoplasm. This study further confirms the dynamic and universal nature of supraspliceosomes that package RNA polymerase II transcribed pre-mRNAs into complexes composed of four native spliceosomes connected by the transcript, independent of their length, number of introns, or splicing state.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    OBJECTIVE: The aim of the study was to define pharmacodynamic markers for sudemycin D6, an experimental cancer drug that changes alternative splicing in human blood.
    METHODS: Blood samples from 12 donors were incubated with sudemycin D6 for up to 24 hours, and at several time points total RNA from lymphocytes was prepared and the pre-messenger RNA (mRNA) splicing patterns were analyzed with reverse transcription-polymerase chain reaction.
    RESULTS: Similar to immortalized cells, blood lymphocytes change alternative splicing due to sudemycin D6 treatment. However, lymphocytes in blood respond slower than immortalized cultured cells.
    CONCLUSIONS: Exon skipping in the DUSP11 and SRRM1 pre-mRNAs are pharmacodynamic markers for sudemycin D6 treatment and show effects beginning at 9 hours after treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    U2 snRNP auxiliary factor 65 kDa (U2AF(65)) is a general splicing factor that contacts polypyrimidine (Py) tract and promotes prespliceosome assembly. In this report, we show that U2AF(65) stimulates alternative exon skipping in spinal muscular atrophy (SMA)-related survival motor neuron (SMN) pre-mRNA. A stronger 5\' splice-site mutation of alternative exon abolishes the stimulatory effects of U2AF(65). U2AF(65) overexpression promotes its own binding only on the weaker, not the stronger, Py tract. We further demonstrate that U2AF(65) inhibits splicing of flanking introns of alternative exon in both three-exon and two-exon contexts. Similar U2AF(65) effects were observed in Fas (Apo-1/CD95) pre-mRNA. Strikingly, we demonstrate that U2AF(65) even inhibits general splicing of adenovirus major late (Ad ML) or β-globin pre-mRNA. Thus, we conclude that U2AF(65) possesses a splicing Inhibitory function that leads to alternative exon skipping.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号