spherical U-net

  • 文章类型: Journal Article
    胎儿大脑的皮质表面分裂对于通过对大脑结构和功能的区域分析来理解妊娠期间的神经发育轨迹至关重要。本研究提出了注意门控球形U网,一种新颖的深度学习模型,设计用于胎儿大脑的自动皮质表面分割。我们使用来自55个典型发育胎儿的MRI训练和验证模型[孕周:32.9±3.3(平均值±SD),27.4-38.7].将所提出的模型与基于表面配准的方法进行了比较,SPHARM-net,和原来的球形U形网。与以前的方法相比,我们的模型在分割性能方面表现出明显更高的准确性,实现整体骰子系数为0.899±0.020。它还显示了中值边界距离方面的最低误差,2.47±1.322(mm),和表面积测量的平均绝对百分比误差,10.40±2.64(%)。在这项研究中,我们显示了注意门在捕获胎儿皮质表面分裂中微妙但重要的信息方面的功效。我们精确的自动分割模型可以提高检测区域皮层异常的灵敏度,并导致早期检测胎儿神经发育障碍的潜力。
    Cortical surface parcellation for fetal brains is essential for the understanding of neurodevelopmental trajectories during gestations with regional analyses of brain structures and functions. This study proposes the attention-gated spherical U-net, a novel deep-learning model designed for automatic cortical surface parcellation of the fetal brain. We trained and validated the model using MRIs from 55 typically developing fetuses [gestational weeks: 32.9 ± 3.3 (mean ± SD), 27.4-38.7]. The proposed model was compared with the surface registration-based method, SPHARM-net, and the original spherical U-net. Our model demonstrated significantly higher accuracy in parcellation performance compared to previous methods, achieving an overall Dice coefficient of 0.899 ± 0.020. It also showed the lowest error in terms of the median boundary distance, 2.47 ± 1.322 (mm), and mean absolute percent error in surface area measurement, 10.40 ± 2.64 (%). In this study, we showed the efficacy of the attention gates in capturing the subtle but important information in fetal cortical surface parcellation. Our precise automatic parcellation model could increase sensitivity in detecting regional cortical anomalies and lead to the potential for early detection of neurodevelopmental disorders in fetuses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    当前的球形表面配准方法在神经成像分析中在跨个体的皮质表面的对准和空间归一化方面实现了良好的性能。然而,它们是计算密集型的,因为他们必须为每对曲面独立地优化目标函数。在本文中,我们提出了一种基于快速学习的算法,该算法利用球形卷积神经网络(CNN)的最新发展进行球形皮质表面配准。给定一组没有监督信息的表面对,例如地面实况变形场或解剖标志,我们将配准公式化为参数函数,并通过使用该函数执行一个表面与另一个表面之间的特征相似性来学习其参数。然后,给定一对新的表面,我们可以快速推断一个表面到另一个表面的球形变形场。我们使用三个正交的球形U网对该参数函数进行建模,并使用球形变换层来扭曲球形表面,同时对变形场施加平滑度约束。网络中的所有层都是定义良好且可区分的,因此可以有效地学习参数。我们表明,我们的方法在102名受试者上实现了精确的皮层对齐结果,与两种最先进的方法相当:球形恶魔和MSM,而跑得更快。
    Current spherical surface registration methods achieve good performance on alignment and spatial normalization of cortical surfaces across individuals in neuroimaging analysis. However, they are computationally intensive, since they have to optimize an objective function independently for each pair of surfaces. In this paper, we present a fast learning-based algorithm that makes use of the recent development in spherical Convolutional Neural Networks (CNNs) for spherical cortical surface registration. Given a set of surface pairs without supervised information such as ground truth deformation fields or anatomical landmarks, we formulate the registration as a parametric function and learn its parameters by enforcing the feature similarity between one surface and the other one warped by the estimated deformation field using the function. Then, given a new pair of surfaces, we can quickly infer the spherical deformation field registering one surface to the other one. We model this parametric function using three orthogonal Spherical U-Nets and use spherical transform layers to warp the spherical surfaces, while imposing smoothness constraints on the deformation field. All the layers in the network are well-defined and differentiable, thus the parameters can be effectively learned. We show that our method achieves accurate cortical alignment results on 102 subjects, comparable to two state-of-the-art methods: Spherical Demons and MSM, while runs much faster.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在本文中,我们提出了人类外侧前额叶皮层(PFC)中沟的自动标记框架。我们使用最新的表面数据增强技术来适应现有的球形U-Net体系结构,以提高发育队列中的沟标记准确性。具体来说,我们的框架包括以下关键组件:(1)在皮质表面配准过程中生成的增强几何特征,(2)球形U-Net架构,以有效地适应增强的特征,(3)通过图割技术优化空间相干性对沟标记进行后处理。我们在30名健康受试者上验证了我们的方法,并在PFC内手动标记了沟区域。在实验中,我们证明了与多图谱(0.6410)和标准球形U-Net(0.7011)方法相比,平均骰子重叠的标记性能(0.7749)显着提高,分别为(p<0.05)。此外,在这个发育队列中,所提出的方法在20秒内获得了完整的沟标记。
    In this paper, we present the automatic labeling framework for sulci in the human lateral prefrontal cortex (PFC). We adapt an existing spherical U-Net architecture with our recent surface data augmentation technique to improve the sulcal labeling accuracy in a developmental cohort. Specifically, our framework consists of the following key components: (1) augmented geometrical features being generated during cortical surface registration, (2) spherical U-Net architecture to efficiently fit the augmented features, and (3) postrefinement of sulcal labeling by optimizing spatial coherence via a graph cut technique. We validate our method on 30 healthy subjects with manual labeling of sulcal regions within PFC. In the experiments, we demonstrate significantly improved labeling performance (0.7749) in mean Dice overlap compared to that of multi-atlas (0.6410) and standard spherical U-Net (0.7011) approaches, respectively (p < 0.05). Additionally, the proposed method achieves a full set of sulcal labels in 20 seconds in this developmental cohort.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    卷积神经网络(CNN)一直在为涉及欧几里得空间中的2D/3D图像的学习相关问题提供最先进的性能。然而,与欧几里得空间不同,医学成像中的许多结构的形状在歧管空间中具有球形拓扑,例如,由三角形网格表示的大脑皮层或皮层下表面,在顶点数和局部连通性方面具有较大的主体间和主体内变化。因此,没有一致的邻域定义,因此对于皮质/皮质下表面数据没有直接的卷积/转置卷积操作。在本文中,通过利用映射到球形空间的重采样皮质表面的规则和一致的几何结构,我们提出了一种新的卷积滤波器,类似于图像网格上的标准卷积。因此,我们开发相应的卷积运算,池化,和球面数据的转置卷积,从而构造球面CNN。具体来说,我们通过用球形操作对应物替换标准U-Net中的所有操作来提出球形U-Net架构。然后,我们将球形U-Net应用于婴儿大脑中两个具有挑战性且具有神经科学意义的任务:皮质表面分裂和皮质属性图发育预测。这两种应用程序都在准确性方面表现出竞争优势,计算效率,以及我们提出的球形U网的有效性,与最先进的方法相比。
    Convolutional Neural Networks (CNNs) have been providing the state-of-the-art performance for learning-related problems involving 2D/3D images in Euclidean space. However, unlike in the Euclidean space, the shapes of many structures in medical imaging have a spherical topology in a manifold space, e.g., brain cortical or subcortical surfaces represented by triangular meshes, with large inter-subject and intra-subject variations in vertex number and local connectivity. Hence, there is no consistent neighborhood definition and thus no straightforward convolution/transposed convolution operations for cortical/subcortical surface data. In this paper, by leveraging the regular and consistent geometric structure of the resampled cortical surface mapped onto the spherical space, we propose a novel convolution filter analogous to the standard convolution on the image grid. Accordingly, we develop corresponding operations for convolution, pooling, and transposed convolution for spherical surface data and thus construct spherical CNNs. Specifically, we propose the Spherical U-Net architecture by replacing all operations in the standard U-Net with their spherical operation counterparts. We then apply the Spherical U-Net to two challenging and neuroscientifically important tasks in infant brains: cortical surface parcellation and cortical attribute map development prediction. Both applications demonstrate the competitive performance in the accuracy, computational efficiency, and effectiveness of our proposed Spherical U-Net, in comparison with the state-of-the-art methods.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    越来越多的多站点婴儿神经影像学数据集正在促进以更大的样本量和更大的统计能力来理解早期大脑发育的研究。然而,对皮质特性的联合分析(例如,皮质厚度)不可避免地面临着MRI扫描仪差异引入的非生物差异问题。为了解决这个问题,在本文中,我们提出了基于球形皮质表面的周期一致对抗网络,以协调不同扫描仪之间的皮质厚度图。我们将球形U-Net和CycleGAN结合起来构造一个表面到表面的CycleGAN(S2SGAN)。具体来说,我们将从扫描仪X到扫描仪Y的协调建模为表面到表面的平移任务。协调的第一个目标是学习映射GX:X→Y,使得来自GX(X)的表面厚度图的分布与Y无法区分。第二个目标是保持个体差异,我们利用逆映射GY:Y→X和周期一致性损失来强制GY(GX(X))≈X(反之亦然)。此外,我们结合了相关系数损失,以保证原始和生成的表面厚度图之间的结构一致性。对合成和真实婴儿皮层数据的定量评估表明,我们的方法在消除不必要的扫描仪效应和同时保持个体差异方面具有卓越的能力,与最先进的方法相比。
    Increasing multi-site infant neuroimaging datasets are facilitating the research on understanding early brain development with larger sample size and bigger statistical power. However, a joint analysis of cortical properties (e.g., cortical thickness) is unavoidably facing the problem of non-biological variance introduced by differences in MRI scanners. To address this issue, in this paper, we propose cycle-consistent adversarial networks based on spherical cortical surface to harmonize cortical thickness maps between different scanners. We combine the spherical U-Net and CycleGAN to construct a surface-to-surface CycleGAN (S2SGAN). Specifically, we model the harmonization from scanner X to scanner Y as a surface-to-surface translation task. The first goal of harmonization is to learn a mapping G X : X → Y such that the distribution of surface thickness maps from G X (X) is indistinguishable from Y. Since this mapping is highly under-constrained, with the second goal of harmonization to preserve individual differences, we utilize the inverse mapping G Y : Y → X and the cycle consistency loss to enforce G Y (G X (X)) ≈ X (and vice versa). Furthermore, we incorporate the correlation coefficient loss to guarantee the structure consistency between the original and the generated surface thickness maps. Quantitative evaluation on both synthesized and real infant cortical data demonstrates the superior ability of our method in removing unwanted scanner effects and preserving individual differences simultaneously, compared to the state-of-the-art methods.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们提出了使用球形深度卷积神经网络的皮质表面分割。传统的多图谱皮层表面分割需要使用几何特征进行受试者间表面配准,在单个受试者上处理速度较慢(2-3小时)。此外,即使是最佳的表面配准也不一定会产生最佳的皮质分割,因为包裹边界与几何特征不完全匹配。在这种情况下,训练特征的选择对于准确的皮层分割很重要。为了有效利用网络,我们提出了来自不规则和复杂的皮质表面结构的皮质分裂特定的输入数据。为此,我们对齐地面实况皮质地块边界,并使用其产生的变形场来生成新的变形几何特征和分块图对。为了扩展网络的能力,然后,我们使用中间变形场平滑地变形皮层几何特征和分割图。我们在427个成人大脑的49个标签上验证了我们的方法。实验结果表明,我们的方法优于传统的多图集和朴素的球形U-Net方法,同时在不到一分钟的时间内实现完整的皮质分裂。
    We present cortical surface parcellation using spherical deep convolutional neural networks. Traditional multi-atlas cortical surface parcellation requires inter-subject surface registration using geometric features with slow processing speed on a single subject (2-3 hours). Moreover, even optimal surface registration does not necessarily produce optimal cortical parcellation as parcel boundaries are not fully matched to the geometric features. In this context, a choice of training features is important for accurate cortical parcellation. To utilize the networks efficiently, we propose cortical parcellation-specific input data from an irregular and complicated structure of cortical surfaces. To this end, we align ground-truth cortical parcel boundaries and use their resulting deformation fields to generate new pairs of deformed geometric features and parcellation maps. To extend the capability of the networks, we then smoothly morph cortical geometric features and parcellation maps using the intermediate deformation fields. We validate our method on 427 adult brains for 49 labels. The experimental results show that our method outperforms traditional multi-atlas and naive spherical U-Net approaches, while achieving full cortical parcellation in less than a minute.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在人脑核磁共振研究中,准确地将皮质表面分成在解剖学和功能上有意义的区域非常重要。在本文中,我们提出了一种新颖的端到端深度学习方法,通过将表面分割作为球体上的语义分割任务。为了将卷积神经网络(CNN)扩展到球形空间,表面卷积的相应操作,首先开发了池化和上采样来处理球面网格上的数据表示,然后相应地构造球形CNN。具体来说,将U-Net和SegNet体系结构转换为新生儿皮质表面分割的球形表示。对90例新生儿的实验结果表明了我们提出的球形U-Net的有效性和效率,与球形SegNet和以前的逐片分类方法相比。
    In human brain MRI studies, it is of great importance to accurately parcellate cortical surfaces into anatomically and functionally meaningful regions. In this paper, we propose a novel end-to-end deep learning method by formulating surface parcellation as a semantic segmentation task on the sphere. To extend the convolutional neural networks (CNNs) to the spherical space, corresponding operations of surface convolution, pooling and upsampling are first developed to deal with data representation on spherical surface meshes, and then spherical CNNs are constructed accordingly. Specifically, the U-Net and SegNet architectures are transformed to the spherical representation for neonatal cortical surface parcellation. Experimental results on 90 neonates indicate the effectiveness and efficiency of our proposed spherical U-Net, in comparison with the spherical SegNet and the previous patch-wise classification method.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号