solid-state electrolytes

固态电解质
  • 文章类型: Journal Article
    固态电解质具有碳铁矿结构,如Li6PS5Cl,由于与液体电解质相比具有优越的安全性和比其他固体电解质更高的离子电导率,因此引起了相当大的关注。尽管已经做出了实验努力通过控制无序程度来增强电导率,潜在的扩散机制尚未完全了解。此外,基于从头算分子动力学(MD)模拟的现有理论分析在解决室温下的各种类型的紊乱方面存在局限性。在这项研究中,我们直接研究了300K下Li6PS5Cl中的锂离子扩散,由机器学习潜力(MLP)授权的长期MD模拟。为保证电导率值在10%的误差范围内收敛,我们采用25ns的模拟,使用包含6500个原子的5×5×5超级单元。计算的锂离子电导率,活化能,平衡场地的占用与实验观察结果吻合良好。值得注意的是,当Cl离子占据4c位点的25%而不是无序最大化的50%时,锂离子电导率达到峰值。此外,锂离子扩散表现出非阿伦尼乌斯行为,导致高温(>400K)下不同的活化能。这些现象可以通过跳间和跳间之间的相互作用来解释。通过阐明影响Li6PS5Cl中锂离子扩散的关键因素,这项工作铺平了道路,为优化离子电导率在银铁矿家族。
    Solid-state electrolytes with argyrodite structures, such as Li6PS5Cl, have attracted considerable attention due to their superior safety compared to liquid electrolytes and higher ionic conductivity than other solid electrolytes. Although experimental efforts have been made to enhance conductivity by controlling the degree of disorder, the underlying diffusion mechanism is not yet fully understood. Moreover, existing theoretical analyses based on ab initio molecular dynamics (MD) simulations have limitations in addressing various types of disorder at room temperature. In this study, we directly investigate Li-ion diffusion in Li6PS5Cl at 300 K using large-scale, long-term MD simulations empowered by machine-learning potentials (MLPs). To ensure the convergence of conductivity values within an error range of 10%, we employ a 25 ns simulation using a 5 × 5 × 5 supercell containing 6500 atoms. The computed Li-ion conductivity, activation energies, and equilibrium site occupancies align well with experimental observations. Notably, Li-ion conductivity peaks when Cl ions occupy 25% of the 4c sites rather than at 50% where the disorder is maximized. In addition, Li-ion diffusion shows non-Arrhenius behavior, leading to different activation energies at high temperatures (>400 K). These phenomena are explained by the interplay between inter- and intracage jumps. By elucidation of the key factors affecting Li-ion diffusion in Li6PS5Cl, this work paves the way for optimizing ionic conductivity in the argyrodite family.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目前正在开发新的电池技术,其中,全固态电池应提供更好的电化学性能和增强的安全性。复合固体电解质,结合固体聚合物电解质(SPE)和陶瓷电解质(CE),然后应该提供与高机械稳定性耦合的高离子电导率。迄今为止,由于混合固体电解质中锂离子传输的复杂性,这种协同作用尚未达到。特别是在SPE/CE接口当前认为的限制步骤。然而,没有适当的动力学模型来阐明影响这种界面屏障的参数。对SPE/CE接口的有限理解可以部分解释为文献中报道的分散的SPE/CE接口电阻以及缺乏系统研究。在这里,基于基于电化学阻抗谱(EIS)和X射线发射光谱(XPS)的方法,我们提出了对基于LATP的模型陶瓷的化学和热处理的SPE/CE界面电阻的影响的系统研究。结果为优化该界面提供了不同的杠杆,并为获得更多可重复结果所需的实验预防措施提供了宝贵的见解。
    New battery technologies are currently under development, and among them, all-solid-state batteries should deliver better electrochemical performance and enhanced safety. Composite solid electrolytes, combining a solid polymer electrolyte (SPE) and a ceramic electrolyte (CE), should then provide high ionic conductivity coupled to high mechanical stability. To date, this synergy has not yet been reached due to the complexity of the Li-ion transport within the hybrid solid electrolyte, especially at the SPE/CE interface currently considered the limiting step. Yet, there is no proper kinetic model to elucidate the parameters influencing this interfacial barrier. The limited understanding of the SPE/CE interface can be partly explained by scattered SPE/CE interface resistances reported in the literature as well as the lack of systematic studies. Herein, we propose a systematic study of the effect on the SPE/CE interfacial resistance of chemical and thermal treatments of a model LATP-based ceramic based on a methodology relying on electrochemical impedance spectroscopy (EIS) and X-ray photoemission spectroscopy (XPS). The results provide different levers for the optimization of this interface and valuable insights into experimental precautions needed to obtain more reproducible results.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    固态电解质(SSE),作为全固态电池(ASSB)的心脏,被公认为下一代储能解决方案,提供高安全性,延长循环寿命,和优越的能量密度。SSE在离子传输和电子分离中起着关键作用。尽管如此,接口兼容性和稳定性问题对进一步增强ASSB性能构成重大障碍。广泛的研究表明,接口控制方法可以有效地提高ASSB性能。本文综述了近年来SSE在界面工程中的进展和最新进展。我们讨论了各种监管策略和方向对绩效的详细影响,包括增强Li+流动性,减少能源壁垒,固定阴离子,引入夹层,建造独特的结构。这篇综述为高性能锂金属ASSB的开发提供了新的视角。
    Solid-state electrolytes (SSEs), as the heart of all-solid-state batteries (ASSBs), are recognized as the next-generation energy storage solution, offering high safety, extended cycle life, and superior energy density. SSEs play a pivotal role in ion transport and electron separation. Nonetheless, interface compatibility and stability issues pose significant obstacles to further enhancing ASSB performance. Extensive research has demonstrated that interface control methods can effectively elevate ASSB performance. This review delves into the advancements and recent progress of SSEs in interfacial engineering over the past years. We discuss the detailed effects of various regulation strategies and directions on performance, encompassing enhancing Li+ mobility, reducing energy barriers, immobilizing anions, introducing interlayers, and constructing unique structures. This review offers fresh perspectives on the development of high-performance lithium-metal ASSBs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    固态电解质中差的电化学稳定性窗口和低的离子电导率阻碍了安全、高电压,和能量密集型锂金属电池。在这里,利用腈基独特的电子效应,我们设计了一种新型的基于氮烷的单离子共价有机框架(CN-iCOF)结构,该结构在锂金属电池中具有有效的Li传输和高电压稳定性。密度泛函理论(DFT)计算和分子动力学(MD)表明,吸电子腈基不仅导致超低的HOMO能量轨道,而且还通过电荷离域增强了Li解离,导致0.93的高tLi+和高达5.6V的显著氧化稳定性(vs.Li+/Li)同时。此外,利用Strecker反应的氰化将可逆的亚胺键转化为稳定的含sp3碳的氮杂阴离子,这促进了沿一维阴离子通道的传输“阶梯”的扭曲排列,在环境温度下,离子电导率可达到1.33×10-5Scm-1,而无需任何添加剂。因此,CN-iCOF允许具有高压阴极的固态锂金属电池的运行,例如LiNi0.8Mn0.1Co0.1O2(NCM811),证明稳定的锂沉积高达1,100小时和可逆电池循环在环境温度高达4.5V,阐明为即将推出的高性能电池发现新功能的重要性。
    The poor electrochemical stability window and low ionic conductivity in solid-state electrolytes hinder the development of safe, high-voltage, and energy-dense lithium metal batteries. Herein, taking advantage of the unique electronic effect of nitrile groups, we designed a novel azanide-based single-ion covalent organic framework (CN-iCOF) structure that possesses effective Li+ transport and high-voltage stability in lithium metal batteries. Density functional theory (DFT) calculations and molecular dynamics (MD) revealed that electron-withdrawing nitrile groups not only resulted in an ultralow HOMO energy orbital but also enhanced Li+ dissociation through charge delocalization, leading to a high tLi+ of 0.93 and remarkable oxidative stability up to 5.6 V (vs. Li+/Li) simultaneously. Moreover, cyanation leveraging Strecker reaction transformed reversible imine-linkage to a stable sp3-carbon-containing azanide anion, which facilitated contorted alignment of transport \"ladders\" along the one-dimensional anionic channels and the ionic conductivity could reach 1.33 × 10-5 S cm-1 at ambient temperature without any additives. As a result, CN-iCOF allowed operation of solid-state lithium metal batteries with high-voltage cathodes such as LiNi0.8Mn0.1Co0.1O2 (NCM811), demonstrating stable lithium deposition up to 1,100 h and reversible battery cycling at ambient temperature up to 4.5 V, shedding light on the importance of discovering new functionality for forthcoming high-performance batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由普通水性电解质产生的无法控制的界面副反应,就像析氢反应(HER)和枝晶生长一样,严重阻碍了锌离子电池(ZIBs)的实际应用。通过采用高质量的固态电解质(SSE),固态ZIB被认为是一种有效的策略。这里,通过将深共晶电解质(DEE)限制在金属有机骨架(MOF)-PCN-222的纳米通道中,获得了具有内部Zn2传输通道的稳定的DEE@PCN-222SSE。DEE@PCN-222内部由DEE和PCN-222组成的独特的离子传输网络实现了有效的Zn2传导,有助于在室温下3.13×10-4Scm-1的高离子电导率,0.12eV的低活化能,和0.76的高Zn2+迁移数。此外,实验和理论研究表明,DEE@PCN-222具有独特的通道结构,可以均匀地调节Zn2分布并有效减轻副反应。通过SSE可以实现2476h的高度可逆的镀锌/剥离性能。固态ZIB显示出306mAh/g-1的比容量,并且显示出517个循环的循环稳定性。这种独特的设计理念为实现高安全性和高性能的ZIB提供了新的视角。
    Uncontrollable interfacial side reactions generated from common aqueous electrolytes, just like the hydrogen evolution reaction (HER) and dendrite growth, have severely prevented the practical application of zinc-ion batteries (ZIBs). Solid-state ZIBs are considered to be an efficient strategy by adopting high-quality solid-state electrolytes (SSEs). Here, by confining deep eutectic electrolyte (DEE) into the nanochannels of metal-organic framework (MOF)-PCN-222, a stable DEE@PCN-222 SSE with internal Zn2+ transport channels was obtained. A distinctive ion-transport network composed of DEE and PCN-222 in the interior of DEE@PCN-222 realizes the efficient Zn2+ conduction, contributing to high ionic conductivity of 3.13×10-4 S cm-1 at room temperature, low activation energy of 0.12 eV, and a high Zn2+ transference number of 0.74. Furthermore, experimental and theoretical investigations demonstrate that DEE@PCN-222 with its unique channel structure could homogeneously regulate the Zn2+ distribution and effectively alleviate the side reactions. Highly reversible Zn plating/stripping performance of 2476 h can be realized by the SSE. The solid-state ZIBs show a specific capacity of 306 mAh g-1 and display cycling stability of 517 cycles. This unique design concept provides a new perspective in realizing the high-safety and high-performance ZIBs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    金属有机骨架(MOF)由于其规则的通道和可控的形态,已成为Li导电电解质的有吸引力的候选者。使它们在固态锂电池领域的存在突出。然而,大多数MOF基电解质是在室温或接近室温下研究的,这对它们在低温下的实际应用提出了挑战。在这里,开发了用于锂离子电池(LIBs)的薄层花形2DCu-MOF(CuBDC-10)基固态电解质(SSE),以促进Li在较低温度下的传输,在-30°C下实现10-4Scm-1的离子电导率。基于CuBDC-10的SSE在-40至100°C(0.073-3.68×10-3Scm-1)的宽温度范围内表现出出色的离子电导率。这项工作为探索基于MOF的SSE在低温下具有高离子传输性能提供了策略。
    Metal-organic frameworks (MOFs) have emerged as attractive candidates for Li+ conducting electrolytes due to their regular channels and controllable morphology, making their presence prominent in the field of solid-state lithium batteries. However, most MOF-based electrolytes are researched at or near room temperature, which poses a challenge to their practical applications at low temperatures. Herein, a thin layer flower-shaped 2D Cu-MOF (CuBDC-10)-based solid-state electrolytes (SSEs) for lithium-ion batteries (LIBs) are developed for facilitating Li+ transport at lower temperatures, which achieve an ion conductivity of 10-4 S cm-1 at -30 °C. The CuBDC-10-based SSE exhibits outstanding ionic conductivity over a wide temperature range of -40 to 100 °C (0.073-3.68 × 10-3 S cm-1). This work provides strategies for exploring MOF-based SSEs with high ionic transport performances at low temperatures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    石榴石型Li6.75La3Zr1.75Ta0.25O12(LLZTO)是一种有前途的固态电解质(SSE),因为它具有快速的离子传导和对锂(Li)金属的显着化学/电化学稳定性。然而,LLZTO与Li阳极间界面润湿性差、界面电阻大,极大地限制了其实际应用。在这项工作中,我们开发了一种原位化学转化策略,以在LLZTO表面上构建高度导电的Li2S@C层,能够改善LLZTO和Li阳极之间的界面润湿性。Li/Li2S@C-LLZTO-Li2S@C/Li对称电池具有78.5Ωcm2的低界面阻抗,远低于Li/LLZTO/Li电池的970Ωcm2。此外,Li/Li2S@C-LLZTO-Li2S@C/Li电池具有1.4mAcm-2的高临界电流密度和在0.1mAcm-2时3000h的超长稳定性。当用于LiFePO4电池时,Li/Li2S@C-LLZTO/LiFePO4电池在0.2C时表现出150.8mAhg-1的高初始放电容量,在200次循环中没有锂存储容量衰减。这项工作提供了一种新颖可行的策略来解决SSE的界面问题并实现无锂枝晶的固态电池。
    Garnet-type Li6.75La3Zr1.75Ta0.25O12 (LLZTO) is a promising solid-state electrolyte (SSE) because of its fast ionic conduction and notable chemical/electrochemical stability toward the lithium (Li) metal. However, poor interface wettability and large interface resistance between LLZTO and Li anode greatly restrict its practical applications. In this work, we develop an in situ chemical conversion strategy to construct a highly conductive Li2S@C layer on the surface of LLZTO, enabling improved interfacial wettability between LLZTO and the Li anode. The Li/Li2S@C-LLZTO-Li2S@C/Li symmetric cell has a low interface impedance of 78.5 Ω cm2, much lower than the 970 Ω cm2 of a Li/LLZTO/Li cell. Moreover, the Li/Li2S@C-LLZTO-Li2S@C/Li cell exhibits a high critical current density of 1.4 mA cm-2 and an ultralong stability of 3000 h at 0.1 mA cm-2. When used in a LiFePO4 battery, the Li/Li2S@C-LLZTO/LiFePO4 battery exhibits a high initial discharge capacity of 150.8 mA h g-1 at 0.2 C without lithium storage capacity attenuation during 200 cycles. This work provides a novel and feasible strategy to address interface issues of SSEs and achieve lithium-dendrite-free solid-state batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目前商业上使用的阳极材料,石墨,理论容量仅为372mAh/g,导致相对较低的能量密度。锂(Li)金属是一种有希望的候选阳极,用于提高能量密度;然而,与安全和性能相关的挑战是由于Li的树枝状增长而出现的,这需要解决。由于锂金属电池中的这些关键问题,全固态锂离子电池(ASSLIBs)由于其优越的能量密度和增强的安全特性而引起了相当大的兴趣。在ASSLIB的关键组成部分中,固态电解质(SSE)在决定其整体性能方面起着至关重要的作用。各种类型的SSE,包括硫化物,氧化物,和聚合物,已经广泛研究了锂金属阳极。硫化物SSE已显示出高离子电导率;然而,出于安全考虑,枝晶形成和有限的电化学窗口阻碍了ASSLIB的商业化。相反,氧化物SSE表现出宽的电化学窗口,但是与Li金属的相容性问题导致界面电阻问题。聚合物SSE具有柔性的优点;然而,它们有限的离子传导性对商业化提出了挑战。这篇综述旨在提供与锂金属阳极的每种SSE类型相关的独特特征和固有挑战的概述,同时还提出了基于先前研究结果的未来增强的潜在途径。
    The current commercially used anode material, graphite, has a theoretical capacity of only 372 mAh/g, leading to a relatively low energy density. Lithium (Li) metal is a promising candidate as an anode for enhancing energy density; however, challenges related to safety and performance arise due to Li\'s dendritic growth, which needs to be addressed. Owing to these critical issues in Li metal batteries, all-solid-state lithium-ion batteries (ASSLIBs) have attracted considerable interest due to their superior energy density and enhanced safety features. Among the key components of ASSLIBs, solid-state electrolytes (SSEs) play a vital role in determining their overall performance. Various types of SSEs, including sulfides, oxides, and polymers, have been extensively investigated for Li metal anodes. Sulfide SSEs have demonstrated high ion conductivity; however, dendrite formation and a limited electrochemical window hinder the commercialization of ASSLIBs due to safety concerns. Conversely, oxide SSEs exhibit a wide electrochemical window, but compatibility issues with Li metal lead to interfacial resistance problems. Polymer SSEs have the advantage of flexibility; however their limited ion conductivity poses challenges for commercialization. This review aims to provide an overview of the distinctive characteristics and inherent challenges associated with each SSE type for Li metal anodes while also proposing potential pathways for future enhancements based on prior research findings.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景技术固态电池通常被认为是能量存储技术中即将到来的演进。这些可再充电电池的最新进展已经显著地加速了它们朝向实现商业可行性的轨迹。特别是,全固态锂硫电池(ASSLSB)依赖于锂硫可逆氧化还原过程显示出巨大的潜力,作为一个能量存储系统,超越传统的锂离子电池。这主要归因于它们异常的能量密度,延长运行寿命,并提高了安全属性。尽管有这些优势,ASSLSB在商业部门的采用一直很缓慢。为了加快这一特定领域的研究和开发,本文全面回顾了ASSLSB的现状。我们深入研究了向ASSLSB过渡的基本原理,探索所涉及的基本科学原理,并对ASSLSB面临的主要挑战进行全面评估。我们建议,该领域的未来研究应优先考虑非活性物质的存在,采用具有最佳性能的电极,最小化界面阻力,并设计可扩展的制造方法,以促进ASSLSB的商业化。
    Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies. Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward achieving commercial feasibility. In particular, all-solid-state lithium-sulfur batteries (ASSLSBs) that rely on lithium-sulfur reversible redox processes exhibit immense potential as an energy storage system, surpassing conventional lithium-ion batteries. This can be attributed predominantly to their exceptional energy density, extended operational lifespan, and heightened safety attributes. Despite these advantages, the adoption of ASSLSBs in the commercial sector has been sluggish. To expedite research and development in this particular area, this article provides a thorough review of the current state of ASSLSBs. We delve into an in-depth analysis of the rationale behind transitioning to ASSLSBs, explore the fundamental scientific principles involved, and provide a comprehensive evaluation of the main challenges faced by ASSLSBs. We suggest that future research in this field should prioritize plummeting the presence of inactive substances, adopting electrodes with optimum performance, minimizing interfacial resistance, and designing a scalable fabrication approach to facilitate the commercialization of ASSLSBs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    使用具有优异的热和电稳定性的固态电解质(SSE)代替液体电解质,组装固态锂离子电池(SSLIBs)被认为是解决这些安全问题的最佳解决方案。然而,单一电解质很难具有高离子电导率的特性,低界面电阻,同时具有对电极的高稳定性。在这项工作中,通过传统的流延法成功制备了无机Li1.3Al0.3Ti1.7(PO4)3(LATP)和有机聚偏氟乙烯-六氟丙烯(PVDF-HFP)聚合物的复合聚合物电解质膜(CPE)。LATP(10wt%)陶瓷粉末的加入使CPE膜(CPE-10)表现出优异的电化学性能:锂离子迁移数和电化学窗口高达0.60和4.94V,分别。此外,CPE-10表现出优异的锂金属稳定性,从而使Li-Li对称电池在0.1mA/cm2下稳定运行超过300小时,同时有效地抑制锂枝晶。当与高压LiNi0.6Co0.2Mn0.2O2(NCM622)阴极配对时,Li/CPE-10/NCM622电池表现出优异的电化学性能:在对应于100%库仑效率的50次循环后,可以在0.2C下进行152mAh/g的最高比放电容量。制备的CPE-10具有优异的电化学性能,为SSLMB提供了一种有效的设计策略。
    Using solid-state electrolytes (SSEs) with excellent thermal and electrical stability to replace liquid electrolytes, and assembling solid-state lithium-ion batteries (SSLIBs) is considered the best solution to these safety issues. However, it is difficult for a single electrolyte to have the characteristics of high ionic conductivity, low interface resistance, and high stability of the counter electrode at the same time. In this work, the composite polymer electrolyte membrane (CPE) of inorganic Li1.3Al0.3Ti1.7(PO4)3 (LATP) and organic poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) polymer was successfully prepared by traditional casting method. The addition of LATP (10 wt %) ceramic powder makes CPE membrane (CPE-10) exhibit excellent electrochemical performance: the lithium-ion transference number and electrochemical window are as high as 0.60 and 4.94 V, respectively. Moreover, the CPE-10 showed excellent Li-metal stability, thereby enabling the Li-Li symmetric cells to stably run for over 300 h at 0.1 mA/cm2 with effective lithium dendrite inhibition. When paired with a high-voltage LiNi0.6Co0.2Mn0.2O2 (NCM622) cathode, the Li/CPE-10/NCM622 cell exhibited excellent electrochemical performance: the highest specific discharge capacity of 152 mAh/g could be conducted at 0.2C after 50 cycles corresponding to 100% Coulombic efficiencies. The prepared CPE-10 demonstrates excellent electrochemical performance, providing an effective design strategy for SSLMBs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号