solid oxide fuel cell

  • 文章类型: Journal Article
    高操作温度的必要性对固体氧化物燃料电池(SOFC)的商业可行性构成相当大的障碍。将活性共掺杂剂离子引入多晶固体结构可以直接影响所得复合材料的物理化学和电性能,包括微晶尺寸,晶格参数,离子和电子电导率,可烧结性,和机械强度。本研究提出了钴-铁取代钆掺杂二氧化铈(CoxFe1-xGDC)作为一种创新,用于开发陶瓷燃料电池的无镍阳极复合材料。一种新的共沉淀技术,使用酒石酸铵作为沉淀剂在Co2的多阳离子溶液中,Gd3+,Fe3+,并利用Ce3+离子。使用一套全面的技术,系统地分析了合成样品的物理化学和形态特征,包括用于热分析的DSC/TGA,XRD用于晶体学分析,SEM/EDX用于形态和元素分析,用于化学键分析的FT-IR,和用于振动分析的拉曼光谱。形态分析,SEM,显示纳米粒子的形成(≤15nm),这与XRD分析确定的晶体尺寸非常吻合,在≤10nm的范围内。单个SOFC双层的制造发生在电解质支撑的结构中,使用GDC作为电解质层和CoO-Fe2O3/GDC复合材料作为阳极。利用SEM成像和EIS分析来检查制造的对称电池。
    The necessity for high operational temperatures presents a considerable obstacle to the commercial viability of solid oxide fuel cells (SOFCs). The introduction of active co-dopant ions to polycrystalline solid structures can directly impact the physiochemical and electrical properties of the resulting composites including crystallite size, lattice parameters, ionic and electronic conductivity, sinterability, and mechanical strength. This study proposes cobalt-iron-substituted gadolinium-doped ceria (CoxFe1-xGDC) as an innovative, nickel-free anode composite for developing ceramic fuel cells. A new co-precipitation technique using ammonium tartrate as the precipitant in a multi-cationic solution with Co2+, Gd3+, Fe3+, and Ce3+ ions was utilized. The physicochemical and morphological characteristics of the synthesized samples were systematically analysed using a comprehensive set of techniques, including DSC/TGA for a thermal analysis, XRD for a crystallographic analysis, SEM/EDX for a morphological and elemental analysis, FT-IR for a chemical bonding analysis, and Raman spectroscopy for a vibrational analysis. The morphological analysis, SEM, showed the formation of nanoparticles (≤15 nm), which corresponded well with the crystal size determined by the XRD analysis, which was within the range of ≤10 nm. The fabrication of single SOFC bilayers occurred within an electrolyte-supported structure, with the use of the GDC as the electrolyte layer and the CoO-Fe2O3/GDC composite as the anode. SEM imaging and the EIS analysis were utilized to examine the fabricated symmetrical cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    化学/电化学催化剂的活性和耐久性受到其表面环境的显著影响,强调彻底检查催化剂表面的重要性。这里,选择Cu取代的La0.6Sr0.4Co0.2Fe0.8O3-δ,用于氧还原反应(ORR)的最先进的材料,探索在高温下还原气氛下表面形貌和化学的实时演变。值得注意的是,在一个开创性的观察中,发现钙钛矿表面在大约100°C的异常低温下开始非晶化,并且当温度升高到400°C时,多组分金属纳米催化剂另外形成在非晶表面上。此外,对所得非晶层在氧化条件下的稳定性的研究表明,非晶结构仅在长时间经历足够的还原时才能承受高温氧化气氛(≥650°C)。因此,活性纳米催化剂和有缺陷的无定形表面的共存导致ORR在200小时内的电极电阻增加近100%,而没有明显的降解。这些观察结果为使用氧化还原动态钙钛矿氧化物主体材料提供了新的催化设计策略。
    The activity and durability of chemical/electrochemical catalysts are significantly influenced by their surface environments, highlighting the importance of thoroughly examining the catalyst surface. Here, Cu-substituted La0.6Sr0.4Co0.2Fe0.8O3-δ is selected, a state-of-the-art material for oxygen reduction reaction (ORR), to explore the real-time evolution of surface morphology and chemistry under a reducing atmosphere at elevated temperatures. Remarkably, in a pioneering observation, it is discovered that the perovskite surface starts to amorphize at an unusually low temperature of approximately 100 °C and multicomponent metal nanocatalysts additionally form on the amorphous surface as the temperature raises to 400 °C. Moreover, this investigation into the stability of the resulting amorphous layer under oxidizing conditions reveals that the amorphous structure can withstand a high-temperature oxidizing atmosphere (≥650 °C) only when it has undergone sufficient reduction for an extended period. Therefore, the coexistence of the active nanocatalysts and defective amorphous surface leads to a nearly 100% enhancement in the electrode resistance for the ORR over 200 h without significant degradation. These observations provide a new catalytic design strategy for using redox-dynamic perovskite oxide host materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    半导体离子燃料电池(SIFCs)在低于600°C的温度下表现出令人印象深刻的离子导电性和高效发电。然而,缺乏对与复合电解质相关的离子传导机制的理解阻碍了SIFCs向较低操作温度的发展。在这项研究中,介绍了一种CeO2/β″-Al2O3异质结构电解质,掺入β″-Al2O3并利用局部电场(LEF)以及Na和Mg2从β″-Al2O3操纵碳酸盐/氢氧化物(C/H)的熔点温度。该设计成功地保持了氧离子在350°C下的快速界面传导。因此,燃料电池装置在350°C下实现了0.019S/cm的优异离子电导率和85.9mW/cm2的功率输出。该系统在550°C时达到1W/cm2的峰值功率密度和0.197S/cm的超高离子电导率。结果表明,通过工程LEF和加入低熔点C/H,这种方法有效地观察到了低温(350℃)下的氧离子传输,有效地克服了在低于419°C的温度下电池失效的问题。这项研究提出了一种有前途的方法,用于在300-600°C的低温范围内进一步开发高性能半导体离子燃料电池。
    Semiconductor ion fuel cells (SIFCs) have demonstrated impressive ionic conductivity and efficient power generation at temperatures below 600 °C. However, the lack of understanding of the ionic conduction mechanisms associated with composite electrolytes has impeded the advancement of SIFCs toward lower operating temperatures. In this study, a CeO2/β″-Al2O3 heterostructure electrolyte is introduced, incorporating β″-Al2O3 and leveraging the local electric field (LEF) as well as the manipulation of the melting point temperature of carbonate/hydroxide (C/H) by Na+ and Mg2+ from β″-Al2O3. This design successfully maintains swift interfacial conduction of oxygen ions at 350 °C. Consequently, the fuel cell device achieved an exceptional ionic conductivity of 0.019 S/cm and a power output of 85.9 mW/cm2 at 350 °C. The system attained a peak power density of 1 W/cm2 with an ultra-high ionic conductivity of 0.197 S/cm at 550 °C. The results indicate that through engineering the LEF and incorporating the lower melting point C/H, there approach effectively observed oxygen ion transport at low temperatures (350 °C), effectively overcoming the issue of cell failure at temperatures below 419 °C. This study presents a promising methodology for further developing high-performance semiconductor ion fuel cells in the low temperature range of 300-600 °C.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    选择具有高耐腐蚀性和低成本的适当铁素体不锈钢(FSS)对于在中间温度下运行的固体氧化物燃料电池(SOFC)至关重要。在这项研究中,四个商业FSS的腐蚀行为,涉及TS430,TY441,YG442和TY445,Cr含量为16.18wt。%至21.73wt。在650°C下研究%。氧化质量增加,表面氧化皮的微观结构,并测量电导率。晶粒尺寸以及掺杂元素的影响与Cr挥发一起进行了估算。在TS430和TY441上形成片状Cr2O3颗粒,主要是Cr3的向外迁移。相比之下,在YG442和TY445上观察到薄而致密的氧化铬层。高Cr含量和均匀分布的晶粒尺寸有利于在初始氧化过程中在FSS表面形成薄且致密的氧化铬皮。另一方面,Nb的加入,Ti,和Mo减弱了Cr3+的向外扩散,减小了氧化铬的粒径。650℃氧化120h后,分散(Mn,Cr)3O4尖晶石颗粒出现在TS430、YG442和TY445上。尽管面积比电阻(ASR)的所有结果均小于6mΩ·cm2,但TY445和YG442表现出更高的电导率。同时,与更高的温度相比,Cr挥发对650°C时质量增加的影响更大。
    Selecting adequate ferritic stainless steel (FSS) with a high corrosion resistance and a low cost is critical for solid oxide fuel cells (SOFCs) operating at intermediate temperature. In this study, the corrosion behaviors of four commercial FSSs involving TS430, TY441, YG442, and TY445 with a Cr content ranging from 16.18 wt.% to 21.73 wt.% are investigated at 650 °C. The oxidation mass gains, microstructures of surface oxide scale, and electrical conductivities are measured. The effects of grain size as well as doped elements are estimated together with the Cr volatilization. Flaky Cr2O3 particles are formed on TS430 and TY441 dominated by the outward migration of Cr3+. In comparison, a thin and dense layer of chromia is observed on YG442 and TY445. A high Cr content and a uniformly distributed grain size are conducive to the formation of a thin and dense chromia scale on the FSS surface during the initial oxidation process. On the other hand, the addition of Nb, Ti, and Mo weakens the outward diffusion of Cr3+ and reduces the particle size of chromia. After oxidation at 650 °C for 120 h, scattered (Mn, Cr)3O4 spinel particles occur on TS430, YG442, and TY445. TY445 and YG442 exhibit a higher conductivity although all the results of area specific resistance (ASR) are less than 6 mΩ·cm2. Meanwhile, the effect of Cr volatilization is enlarged on the estimation of mass gain at 650 °C compared with even higher temperatures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    对于Ni-YSZ阳极支撑的固体氧化物燃料电池(SOFC),主要缺点是由于Ni/NiO体积的变化,它们容易受到还原和氧化气氛的变化。氧化时的阳极膨胀会在电池中引起明显的应力,最终导致失败。为了提高氧化还原稳定性,建立了分析模型来研究阳极结构对氧化还原稳定性的影响。与没有AFL的SOFC相比,阳极氧化后,具有阳极功能层(AFL)的SOFC的电解质和阴极中的拉伸应力分别增加了27.07%和20.77%,分别。阳极结构的厚度对结构的稳定性有很大影响。因此,还讨论了阳极厚度和AFL厚度对氧化后这两种结构中应力的影响。阳极基板的厚度在没有AFL的SOFC中比在具有AFL的SOFC中起到更重要的作用。通过增加阳极基板的厚度,电解质和阴极中的应力降低。该方法为在氧化还原条件下设计可靠的SOFC提供了理论依据,并将在将来有更多的实验证明。
    For Ni-YSZ anode-supported solid oxide fuel cells (SOFCs), the main drawback is that they are susceptible to reducing and oxidizing atmosphere changes because of the Ni/NiO volume variation. The anode expansion upon oxidation can cause significant stresses in the cell, eventually leading to failure. In order to improve the redox stability, an analytical model is developed to study the effect of anode structure on redox stability. Compared with the SOFC without AFL, the tensile stresses in the electrolyte and cathode of SOFC with an anode functional layer (AFL) after anode oxidation are increased by 27.07% and 20.77%, respectively. The thickness of the anode structure has a great influence on the structure\'s stability. Therefore, the influence of anode thickness and AFL thickness on the stress in these two structures after oxidation is also discussed. The thickness of the anode substrate plays a more important role in the SOFC without AFL than in the SOFC with AFL. By increasing the thickness of the anode substrate, the stresses in the electrolyte and cathode decrease. This method provides a theoretical basis for the design of a reliable SOFC in the redox condition and will be more reliable with more experimental proofs in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    混氧离子和电子传导对于固体氧化物燃料电池的阴极材料至关重要。确保高效率和低温运行。然而,传统铁基层状钙钛矿阴极材料的电子和氧离子电导率较低,导致氧还原反应性不足。在这里,一种由五种等摩尔金属组成的高熵钙钛矿氧化物,Pr0.4La0.4Ba0.4Sr0.4Ca0.4Fe2O5+δ(PLBSCF),由PrBaFe2O5δ(PBF)衍生的高性能无钴阴极,是提议的。这种A-site工程不仅可以提高PLBSCF的氧空位浓度,而且可以提供比PBF更高的电导率。因此,在750°C时,将对称电池的极化阻抗显着降低到仅0.052Ω·cm2。还实现了单个电池的良好输出性能。以PLBSCF-Ce0.9Gd0.1O2-δ(GDC)为阴极的单电池在750°C时的峰值功率密度为0.853W·cm-2。此外,具有PLBSCF阴极的单电池在750°C下表现出100小时的良好耐久性能。结合弛豫时间分布分析,可以看出,氧还原反应的增强是由于中频和低频电阻的降低,表明分子氧的电荷转移过程和吸附/解离过程有所改善。
    Mixed-oxygen ionic and electronic conduction is crucial for the cathode materials of solid oxide fuel cells, ensuring high efficiency and low-temperature operation. However, the electronic and oxygen ionic conductivity of traditional Fe-based layered perovskite cathode materials is low, resulting in insufficient oxygen reduction reactivity. Herein, a type of high-entropy perovskite oxide consisting of five equimolar metals, Pr0.4La0.4Ba0.4Sr0.4Ca0.4Fe2O5+δ (PLBSCF), a high-performance cobalt-free cathode derived from the PrBaFe2O5+δ (PBF), is proposed. Such A-site engineering could not only increase the oxygen vacancy concentration of PLBSCF but also give higher conductivity than PBF, thus significantly reducing the polarization impedance of the symmetric cell to only 0.052 Ω·cm2 at 750 °C. The good output performance of a single cell is also realized. The peak power density of the single cell with PLBSCF-Ce0.9Gd0.1O2-δ (GDC) as the cathode at 750 °C was 0.853 W·cm-2. Additionally, the single cell with the PLBSCF cathode exhibits a good durable performance of 100 h at 750 °C. Combining the distribution of relaxation time analysis, it can be seen that the enhancement of the oxygen reduction reaction is due to the reduction of intermediate-frequency and low-frequency resistance, indicating an improvement in the charge transfer process and adsorption/dissociation process of molecular oxygen.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:这项研究主要研究了当使用甲烷燃料和混合气体燃料作为SOFC系统的阳极燃料时,阳极催化剂表面上的碳吸附能力和氢吸附能力的变化。为了降低常用的阳极催化剂-镍基催化剂-对碳氢化合物燃料的碳吸附能力,将铜和金掺杂到镍基催化剂中,以比较对碳和氢吸附能力的影响。此外,除了计算碳和氢的吸附能力,本项目还通过对氢扩散系数和性能极化曲线的分析,评价了混合气体效应和掺杂效应对SOFC性能的影响。研究结果表明,Au掺杂的Ni催化剂中合成气的扩散系数显着提高,在973K时显示高达45.46%的改善。此外,在973K下,掺杂Au的Ni催化剂中合成气产生的电功率增加高达12.06%。
    方法:本研究主要使用DFT计算甲烷上的碳和氢吸附能,利用CASTEP进行计算。在这些计算中,吸附能通过三层表面方法确定,结合Kohn-Sham方程,结合广义梯度逼近和超软伪势进行TS搜索计算。另一方面,本项目将利用MD方法结合ReaxFF势场分析氢在阳极催化剂上的扩散系数,GULP用于完成所有动力学计算理论。最后,该项目将分析SOFC电池的性能,将相关数值方程与Matlab相结合进行数值分析。
    BACKGROUND: This study primarily investigates the changes in carbon adsorption capacity and hydrogen adsorption capacity on the anode catalyst surface when using methane fuel and mixed gas fuel as the anode fuel for SOFC systems. To reduce the carbon adsorption capacity of the commonly used anode catalyst-nickel-based catalysts-towards hydrocarbon fuels, copper and gold are doped into the nickel-based catalysts to compare the effects on carbon and hydrogen adsorption capacities. Moreover, aside from calculating the carbon and hydrogen adsorption capacities, this project also evaluates the impact of mixed gas effects and doping effects on SOFC performance through the analysis of hydrogen diffusion coefficients and performance polarization curves. The findings reveal a noteworthy enhancement in the diffusion coefficient of syngas within the Au-doped Ni catalyst, showing an improvement of up to 45.46% at 973 K. Furthermore, the electrical power generated by syngas in the Au-doped Ni catalyst at 973 K demonstrates an increase of up to 12.06%.
    METHODS: This study primarily employs DFT to calculate the carbon and hydrogen adsorption energies on methane, utilizing CASTEP for the calculations. During these calculations, the adsorption energy is determined through a three-layer surface approach, in conjunction with the Kohn-Sham equations, combining the Generalized Gradient Approximation and ultrasoft pseudopotentials for TS-search calculations. On the other hand, this project will analyze the diffusion coefficient of hydrogen on the anode catalyst using MD methods combined with the ReaxFF potential field, with GULP being utilized to complete all dynamics calculation theories. Finally, the project will analyze the performance of SOFC cells, incorporating relevant numerical equations with Matlab for numerical analysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    固体氧化物燃料电池(SOFC)已被证明是高效和最清洁的电化学能量转换设备之一。然而,该技术的商业化受到与电极性能退化相关的问题的阻碍。本文全面回顾了各种降解机制,这些机制影响了SOFC阳极的性能和长期稳定性,化学,和电化学过程。在SOFC中,最常用的阳极材料是镍-氧化钇稳定的氧化锆(Ni-YSZ),因为它具有高电导率和对H2燃料的高催化活性的优点。然而,影响Ni-YSZ阳极长期稳定性的各种因素,如氧化还原循环,碳焦化,硫中毒,以及由于Ni颗粒粗化而导致的三相边界长度的减少,被彻底调查。作为回应,本文总结了旨在提高Ni-YSZ阳极长期稳定性的最先进的诊断工具和缓解策略。
    Solid Oxide Fuel Cells (SOFCs) have proven to be highly efficient and one of the cleanest electrochemical energy conversion devices. However, the commercialization of this technology is hampered by issues related to electrode performance degradation. This article provides a comprehensive review of the various degradation mechanisms that affect the performance and long-term stability of the SOFC anode caused by the interplay of physical, chemical, and electrochemical processes. In SOFCs, the most used anode material is nickel-yttria stabilized zirconia (Ni-YSZ) due to its advantages of high electronic conductivity and high catalytic activity for H2 fuel. However, various factors affecting the long-term stability of the Ni-YSZ anode, such as redox cycling, carbon coking, sulfur poisoning, and the reduction of the triple phase boundary length due to Ni particle coarsening, are thoroughly investigated. In response, the article summarizes the state-of-the-art diagnostic tools and mitigation strategies aimed at improving the long-term stability of the Ni-YSZ anode.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    固体氧化物燃料电池(SOFC)的阴极经常遭受有害的阳离子偏析和相关的杂质中毒,导致电活性不足和稳定性差。在这里,我们开发了一种中等熵的双钙钛矿GdBa(Co1.2Mn0.2Fe0.2Ni0.2Cu0.2)O5-δ(ME-GBCO),用于有前途的SOFC阴极。增加的构型熵可以有效地调整原位形成的活性BaCoO3-δ(BCO)物种的表面组成,而不是母体GdBaCo2O5-δ(GBCO)表面上的惰性和有害的BaOx偏析。因此,具有有益表面重建的层状ME-GBCO阴极不仅表现出高的氧还原活性,而且对CO2杂质具有优异的耐久性,使它成为中温SOFC(IT-SOFC)非常有吸引力的阴极。我们的研究为通过构型熵诱导的合理表面重构开发高效耐用的阴极提供了新思路。
    The cathodes of solid oxide fuel cells (SOFCs) often suffer from detrimental cation segregations and associated impurities poisoning, leading to insufficient electroactivity and poor stability. Here we developed a medium-entropy double perovskite GdBa(Co1.2Mn0.2Fe0.2Ni0.2Cu0.2)O5-δ (ME-GBCO) for promising SOFC cathode. The increased configuration entropy can effectively tailor the surface composition with in situ formed active BaCoO3-δ (BCO) species, rather than inert and deleterious BaOx segregation on parent GdBaCo2O5-δ (GBCO) surface. Accordingly, the layered ME-GBCO cathode with beneficial surface reconstruction exhibited not only high oxygen reduction activity but excellent durability against CO2 impurity, enabling it a very attractive cathode for intermediate temperature SOFCs (IT-SOFCs). Our study provides a new idea for development of efficient and durable cathodes via configurational entropy induced rational surface reconstruction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过溅射将掺杂Samaria的二氧化铈(SDC)覆盖层沉积在Ag阴极上。根据SDC覆盖层的厚度,改变SDC溅射时间以研究Ag-SDC覆盖层阴极涂覆的燃料电池的性质。在制造的燃料电池中,具有10nm厚的SDC覆盖层(Ag-SDC10)阴极涂层燃料电池的Ag在450°C时表现出最高的峰值功率密度为6.587mW/cm2,显示出比原始的Pt涂层燃料电池更高的性能。此外,电化学阻抗谱显示,与原始Ag涂覆的燃料电池相比,Ag-SDC10阴极涂覆的燃料电池显着减轻了源自增强的氧还原反应动力学的极化损失。
    Samaria-doped ceria (SDC) overlayers were deposited on Ag cathodes by sputtering. The SDC sputtering time was varied to investigate the properties of the Ag-SDC overlayer cathode-coated fuel cells depending on the thickness of the SDC overlayers. Among the fabricated fuel cells, Ag with a 10-nm-thick SDC overlayer (Ag-SDC10) cathode-coated fuel cell exhibited the highest peak power density of 6.587 mW/cm2 at 450 °C, showing higher performance than a pristine Pt-coated fuel cell. Moreover, electrochemical impedance spectroscopy revealed that the Ag-SDC10 cathode-coated fuel cell significantly mitigated polarization loss originating from enhanced oxygen reduction reaction kinetics compared to the pristine Ag-coated fuel cell.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号