solid electrolyte

固体电解质
  • 文章类型: Journal Article
    木质素作为一种天然的生物聚合物正变得越来越需要由于其生态友好的性质,而具有高导电性和可靠耐久性的木质素基电解质在超级电容器中的应用仍然具有挑战性。在这里,提出了一种通过化学交联反应制备木质素纳米颗粒(LNPs)基固体电解质薄膜(LF)的简便方法。制造的LF表现出独特的海绵状多孔结构,离子电导率为3.26mScm-1,证明了出色的柔韧性和良好的机械性能。此外,首次使用LF电解质和LCA电极实现了基于全LNP的对称超级电容器(SSC)器件的组装,证实LF3电解质在电容性能方面优于商业纤维素隔膜。该SSC装置在0.5Ag-1时的比电容为122.7Fg-1,最大能量密度为17.04Whkg-1。此外,海藻酸钠(SA)的掺入显著提高了SA/LF3电解质的离子电导率,所得SSC装置在0.5Ag-1时提供了更高的比电容174.5Fg-1,最大能量和功率密度分别为24.24Whkg-1和5023Wkg-1。这项研究提出了一种在储能应用中可持续利用木质素的有前途的方法。
    Lignin as a natural biopolymer is becoming increasingly in demand due to its eco-friendly properties, while lignin-based electrolyte with high conductivity and reliable durability for applications in supercapacitors is still challenging. Herein, a facile method to prepare lignin nanoparticles (LNPs)-based solid electrolyte thin film (LF) was proposed through chemical cross-linking reaction. The fabricated LF exhibited a distinctive spongy porous structure with the ionic conductivity of 3.26 mS cm-1, demonstrating the exceptional flexibility and favorable mechanical properties. Moreover, the assembly of all-LNPs-based symmetric supercapacitor (SSC) devices was achieved using LF electrolyte and LCA electrodes for the first time, confirming the LF3 electrolyte superior to commercial cellulose separator in capacitive behaviour. This SSC device exhibited a specific capacitance of 122.7 F g-1 at 0.5 A g-1 and the maximum energy density of 17.04 W h kg-1. Furthermore, the incorporation of sodium alginate (SA) significantly enhanced the ionic conductivity of SA/LF3 electrolyte, and the resulting SSC device delivered a higher specific capacitance of 174.5 F g-1 at 0.5 A g-1 and the maximum energy and power densities of 24.24 W h kg-1 and 5023 W kg-1, respectively. This study proposes a promising approach for sustainable utilization of lignin in energy storage applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    阳离子掺杂的立方Li7La3Zr2O12被认为是一种有前途的固体电解质,用于安全且能量密集的固态锂电池。然而,它受到Li2CO3的形成和高电子电导率的影响,导致Li/Li7La3Zr2O12界面和锂枝晶不一致。在这里,复合AlF3-Li6.4La3Zr1.4Ta0.6O12固体电解质是基于高温烧结过程中的AlF3热分解和F/O置换反应而产生的。当AlF3热分解时,它留下Al2O3/AlF3改善了晶界,F-离子部分取代了晶粒中的O2-离子。由于晶粒中F-的较高电负性和晶界改性,这些AlF3-Li6.4La3Zr1.4Ta0.6O12提供优化的电子传导和化学稳定性,防止Li2CO3的形成。Li/AlF3-Li6.4La3Zr1.4Ta0.6O12/Li电池具有〜16Ωcm2的低界面电阻,并且在200μA/cm2的电流密度下具有800小时的超稳定长期循环行为,导致Li//LiCoO2固态电池具有良好的倍率性能和循环稳定性。
    Cation-doped cubic Li7La3Zr2O12 is regarded as a promising solid electrolyte for safe and energy-dense solid-state lithium batteries. However, it suffers from the formation of Li2CO3 and high electronic conductivity, which give rise to an unconformable Li/Li7La3Zr2O12 interface and lithium dendrites. Herein, composite AlF3-Li6.4La3Zr1.4Ta0.6O12 solid electrolytes were created based on thermal AlF3 decomposition and F/O displacement reactions under a high-temperature sintering process. When the AlF3 is thermally decomposed, it leaves Al2O3/AlF3 meliorating the grain boundaries and F- ions partially displacing O2- ions in the grains. Due to the higher electronegativity of F- in the grains and the grain-boundary modification, these AlF3-Li6.4La3Zr1.4Ta0.6O12 deliver optimized electronic conduction and chemical stability against the formation of Li2CO3. The Li/AlF3-Li6.4La3Zr1.4Ta0.6O12/Li cell exhibits a low interfacial resistance of ∼16 Ω cm2 and an ultrastable long-term cycling behavior for 800 h under a current density of 200 μA/cm2, leading to Li//LiCoO2 solid-state batteries with good rate performance and cycling stability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基于氧化石墨烯(GO)的全固态超级电容器(SC)在各种应用中为基于液体和凝胶电解质的SC提供了重要的补充。包括柔性电子。尽管如此,它们平庸的电容和复杂的制造方法阻碍了它们充分发挥潜力。这里,证明了以层状GO作为固体电解质和MXene作为电极的全固态SC的简单制造。与使用液体电解质的其他基于MXene的SC相比,所得SC显示出优异的储能电容。优异的性能归因于额外的层间间距扩展和改善的离子传输动力学,这得益于MXene和GO组合的亲水性的协同吸水效应,有趣地满足了MXene的固有表面支配的伪电容行为。这种SC在湿度传感中的应用也被证明是快速响应的。这项工作中描述的发现提供了一种使用GO作为固体电解质以MXene作为电极改善电容性能的方法,并开发了作为智能设备电子元件的潜在应用。
    Graphene oxide (GO)-based all-solid-state supercapacitors (SCs) provide an important complement to liquid- and gel-electrolyte-based SCs in a variety of applications, including flexible electronics. Still, their mediocre capacitance and complex fabrication methods hold back the realization of their full potential. Here, a simple fabrication of all-solid-state SCs with layered GO as a solid electrolyte and MXene as electrodes is demonstrated. The resultant SCs show excellent energy storage capacitance comparable to other MXene-based SCs using liquid electrolytes. The outperformance is attributed to extra interlayer spacing expansion and improved ion transport kinetics thanks to a synergistic water-absorbing effect due to the hydrophilicity of both MXene and GO in combination, which interestingly satisfies the intrinsic surface-dominated pseudocapacitive behavior of MXene. The application of this SC in humidity sensing has also been demonstrated to be fast responsive. The findings describe in this work provide a means of improving the capacitance performance using GO as a solid electrolyte with MXene as the electrodes and exploit the potential application as electronic elements for smart devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    参比电极是电化学研究的基础,因此,大多数电极材料在三电极模式下进行测试,以获得电位依赖性动力学。然而,传统的参比电极由于其紧凑的组装结构,很难直接使用它们来检测固体电解质器件中的电位信息。因此,电化学装置的动力学研究在精确识别源自阳极或阴极的特定问题方面面临挑战。这里,专注于质子交换膜水电解,我们设计了一种固体电解质可逆氢电极(SE-RHE),可用于各种操作条件下的电极诊断。与文献中报道的参比电极相比,主要基于液体电解质,SE-RHE是高度敏感和兼容的,以及易于组装。电位偏差小于±0.5mV,并且从电极电位阱导出的电池电压再现了直接测量的值,偏差小于0.2%。在这项工作中开发的参比电极能够对特定电极而不是整个电池进行动力学研究。例如,一个有趣的观察是,阴极在稳定和波动的操作下显示出明显的稳定性。不同于稳定运行下的高稳定性,阴极在波动操作下显著退化。
    Reference electrode is the foundation of electrochemical study; thus, most electrode materials are tested in a three-electrode mode to acquire potential-dependent kinetics. However, it is difficult to directly use conventional reference electrodes to detect potential information in solid electrolyte devices due to their compact assembly structure. Therefore, the kinetic study of an electrochemical device faces challenges in precise identification of specific problems originating from the anode or cathode. Here, focusing on proton exchange membrane water electrolysis, we design a solid electrolyte reversible hydrogen electrode (SE-RHE), which can be used for electrode diagnosis under various operating conditions. Compared to the reference electrodes reported in the literature, which are mainly based on liquid electrolyte, the SE-RHE is highly sensitive and compatible, as well as easy to assemble. The potential deviation is less than ±0.5 mV, and the cell voltage derived from the electrode potential well reproduces the value that was directly measured with a deviation less than 0.2%. The reference electrode developed in this work enables the kinetic study of a specific electrode rather than the entire cell. For instance, an interesting observation is that the cathode shows distinct stability under stable and fluctuating operations. Differing from the high stability under stable operation, the cathode degrades significantly under fluctuating operations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    我们使用低剂量低温透射电子显微镜(cryo-TEM)通过保留室温立方相并仔细监测电子剂量来研究反钙钛矿Na2NH2BH4晶体的原子级结构。通过使用选定区域电子衍射对电子束损伤进行定量分析,我们发现低温成像为这种固体电解质提供了6倍的光束稳定性改善。从平面晶体获得的Cryo-TEM图像揭示了一种新的,具有立方相的远程有序超电池。与X射线晶体学显示的4.7µ×4.7µ的立方晶格结构相比,超级电池的晶胞尺寸为9.4µ×9.4µ。实验图像与模拟电位图之间的比较表明,超电池的起源是钠原子的空位排序。这项工作证明了使用低温TEM成像研究对空气和电子束敏感的反钙钛矿型固体电解质的原子级结构的潜力。
    We use low-dose cryogenic transmission electron microscopy (cryo-TEM) to investigate the atomic-scale structure of antiperovskite Na2NH2BH4 crystals by preserving the room-temperature cubic phase and carefully monitoring the electron dose. Via quantitative analysis of electron beam damage using selected area electron diffraction, we find cryogenic imaging provides 6-fold improvement in beam stability for this solid electrolyte. Cryo-TEM images obtained from flat crystals revealed the presence of a new, long-range-ordered supercell with a cubic phase. The supercell exhibits doubled unit cell dimensions of 9.4 Å × 9.4 Å as compared to the cubic lattice structure revealed by X-ray crystallography of 4.7 Å × 4.7 Å. The comparison between the experimental image and simulated potential map indicates the origin of the supercell is a vacancy ordering of sodium atoms. This work demonstrates the potential of using cryo-TEM imaging to study the atomic-scale structure of air- and electron-beam-sensitive antiperovskite-type solid electrolytes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    锂金属电池(LMB),具有高能量密度,是下一代储能系统的有力竞争者。然而,锂枝晶的无序生长和不稳定的固体电解质界面(SEI)显著阻碍了它们的循环效率,并引起了严重的安全问题,渲染LMB对于现实世界的实现是不可行的。共价有机骨架(COF)及其衍生物已经成为具有解决锂金属阳极电极固有问题的显著潜力的多功能材料。这种潜力源于它们丰富的金属仿射官能团,内部通道,和广泛可调的体系结构。原始COF,它们的衍生物,和COF基复合材料可以通过增强导电性有效地引导锂离子的均匀沉积,运输效率,和机械强度,从而减轻锂枝晶生长的问题。这篇综述全面分析了用于减轻LMB中锂枝晶带来的挑战的COF基和衍生材料。此外,我们提出了材料和体系结构的设计和工程的前景和建议,这些材料和体系结构可以使LMB在实际应用中可行。
    Lithium metal batteries (LMBs), with high energy densities, are strong contenders for the next generation of energy storage systems. Nevertheless, the unregulated growth of lithium dendrites and the unstable solid electrolyte interphase (SEI) significantly hamper their cycling efficiency and raise serious safety concerns, rendering LMBs unfeasible for real-world implementation. Covalent organic frameworks (COFs) and their derivatives have emerged as multifunctional materials with significant potential for addressing the inherent problems of the anode electrode of the lithium metal. This potential stems from their abundant metal-affine functional groups, internal channels, and widely tunable architecture. The original COFs, their derivatives, and COF-based composites can effectively guide the uniform deposition of lithium ions by enhancing conductivity, transport efficiency, and mechanical strength, thereby mitigating the issue of lithium dendrite growth. This review provides a comprehensive analysis of COF-based and derived materials employed for mitigating the challenges posed by lithium dendrites in LMB. Additionally, we present prospects and recommendations for the design and engineering of materials and architectures that can render LMBs feasible for practical applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    这里,全固体扫描电化学电池显微镜(SECCM)首先是通过将聚丙烯酰胺(PAM)填充到纳米毛细管中作为固体电解质而建立的。纳米毛细管尖端处的固体PAM纳米球接触石墨烯,并充当用于同时测量形态和电化学活性的电化学电池。与基于液滴的SECCM相比,这种固体纳米球是稳定的,在接触区域不会留下任何电解质,这允许在没有任何间隔的情况下对表面进行精确和连续的扫描。因此,横向(x-y)和垂直(z)方向的分辨率提高到~10nm。石墨烯上皱纹的完整扫描记录了皱纹的两个侧壁处的低电流和皱纹中心处的相对高电流。皱纹的电化学活性的异质性说明了不同曲率的表面上不同的电子转移特征,这是目前的电化学或光学方法很难观察到的。这种高空间电化学显微镜的成功建立克服了当前在纳米尺度上研究材料电化学活性的挑战,这对于更好地理解材料中的电子转移具有重要意义。
    Here, all-solid scanning electrochemical cell microscopy (SECCM) is first established by filling polyacrylamide (PAM) into nanocapillaries as a solid electrolyte. A solid PAM nanoball at the tip of a nanocapillary contacts graphene and behaves as an electrochemical cell for simultaneously measuring the morphology and electrochemical activity. Compared with liquid droplet-based SECCM, this solid nanoball is stable and does not leave any electrolyte at the contact regions, which permits accurate and continuous scanning of the surface without any intervals. Accordingly, the resolutions in the lateral (x-y) and vertical (z) directions are improved to ∼10 nm. The complete scanning of the wrinkles on graphene records low currents at the two sidewalls of the wrinkles and a relatively high current at the center of the wrinkles. The heterogeneity in the electrochemical activity of the wrinkle illustrates different electron transfer features on surfaces with varied curvatures, which is hardly observed by the current electrochemical or optical methods. The successful establishment of this high spatial electrochemical microscopy overcomes the current challenges in investigating the electrochemical activity of materials at the nanoscale, which is significant for a better understanding of electron transfer in materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    电化学二氧化碳(CO2)还原反应(CO2RR)到有价值的液体燃料,例如甲酸/甲酸(HCOOH/HCOO-)是碳中和的有前途的策略。增强CO-2RR活性同时保持高选择性对于商业化至关重要。为了解决这个问题,我们通过简单的水解方法开发了金属掺杂的铋(Bi)纳米片。这些掺杂的纳米片使用多孔固体电解质(PSE)层有效地产生高纯度HCOOH。在评估的金属掺杂Bi催化剂中,与原始Bi相比,共掺杂Bi表现出改善的CO2RR性能,在200mAcm-2的电流密度下,以〜1.0V的低超电势实现〜90%的HCOO选择性和增强的活性。在固体电解质反应器中,在100mAcm-2的电流密度下运行100小时后,共掺杂的Bi保持了〜72%的HCOOH法拉第效率,在3.2V时产生0.1MHCOOH。这项研究表明,Bi纳米片中的金属掺杂改变了化学组成,元素分布,和形态学,通过调节表面吸附亲和力和反应性提高CO2RR催化活性性能。
    Electrochemical carbon dioxide (CO2) reduction reaction (CO2RR) to valuable liquid fuels, such as formic acid/formate (HCOOH/HCOO-) is a promising strategy for carbon neutrality. Enhancing CO2RR activity while retaining high selectivity is critical for commercialization. To address this, we developed metal-doped bismuth (Bi) nanosheets via a facile hydrolysis method. These doped nanosheets efficiently generated high-purity HCOOH using a porous solid electrolyte (PSE) layer. Among the evaluated metal-doped Bi catalysts, Co-doped Bi demonstrated improved CO2RR performance compared to pristine Bi, achieving ~90 % HCOO- selectivity and boosted activity with a low overpotential of ~1.0 V at a current density of 200 mA cm-2. In a solid electrolyte reactor, Co-doped Bi maintained HCOOH Faradaic efficiency of ~72 % after a 100-hour operation under a current density of 100 mA cm-2, generating 0.1 M HCOOH at 3.2 V. Density functional theory (DFT) results revealed that Co-doped Bi required a lower applied potential for HCOOH generation from CO2, due to stronger binding energy to the key intermediates OCHO* compared to pure Bi. This study shows that metal doping in Bi nanosheets modifies the chemical composition, element distribution, and morphology, improving CO2RR catalytic activity performance by tuning surface adsorption affinity and reactivity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    用不易燃固体电解质(SE)代替锂电池中的易燃有机液体电解质对于提高各种应用的安全性至关重要。包括便携式电子产品,电动汽车,和可扩展的能源存储。由于典型的阴极材料不具有超离子导电性,阴极中的锂离子传导主要依赖于引入大量SE作为添加剂以形成复合阴极。这大大损害了固态锂电池的能量密度。这里,我们演示了卤化物SE,Li3VCl6不仅表现出良好的Li+导电性,但更重要的是,提供约80mAhg-1的高度可逆容量,与Li+/Li相比,平均电压为3V。Li3VCl6的离子电导率在电化学锂化/脱锂时经历了边际波动,因为其典型的固溶体反应仅导致锂空位的减少。当与传统的LiFePO4阴极结合时,活性Li3VCl6阴极电解液可实现令人印象深刻的217.1mAhg-1LFP容量,与非活性阴极电解液相比,能量密度增加约50%。利用可用作活性材料的阴极电解液的整体质量提供了提高额外容量的机会,使其在应用中可行。本文受版权保护。保留所有权利。
    Replacing flammable organic liquid electrolytes with nonflammable solid electrolytes (SEs) in lithium batteries is crucial for enhancing safety across various applications, including portable electronics, electric vehicles, and scalable energy storage. Since typical cathode materials do not possess superionic conductivity, Li-ion conduction in the cathode predominantly relies on incorporating a significant number of SEs as additives to form a composite cathode, which substantially compromises the energy density of solid-state lithium batteries. Here, a halide SE, Li3VCl6 is demonstrated, which not only exhibits a decent Li+ conductivity, but more importantly, delivers a highly reversible capacity of approximately 80 mAh g-1 with an average voltage of 3 V versus Li+/Li. The ionic conductivity of Li3VCl6 experiences marginal fluctuations upon electrochemical lithiation/delithiation, as its prototypical solid-solution reaction results solely in a reduction of lithium vacancy. When combined with the traditional LiFePO4 cathode, the active Li3VCl6 catholyte enables an impressive capacity of 217.1 mAh g-1 LFP and about 50% increase in energy density compared with inactive catholytes. Harnessing the integrated mass of the catholyte-which can serve as an active material-presents an opportunity to boost the extra capacity, rendering it feasible in applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    聚(环氧乙烷)(PEO)的低离子电导率和差的界面稳定性限制了其作为聚合物电解质膜制备固态锂(Li)金属电池的实际应用。在这项工作中,基于生物质的羧甲基壳聚糖(CMCS)被设计和开发为PEO基质中的有机填料,以形成复合电解质(PEO@CMCS)。CMCS填料的羧甲基可以促进双(三氟甲烷磺酰亚胺)锂(LiTFSI)的分解,在CMCS/PEO界面生成更多的氟化锂(LiF),不仅形成离子导电网络促进Li+的快速转移,而且有效增强了聚合物电解质与Li金属之间的界面稳定性。羧基的富集,羟基,CMCS填料内的酰胺基官能团可以与环氧乙烷(EO)链形成氢键以改善基于PEO的电解质的拉伸性能。此外,高硬度的CMCS添加剂还可以增强PEO基电解质的机械性能,以抵抗Li枝晶的渗透。LiLi对称电池可实现2500h的稳定循环,磷酸铁锂全电池在400次循环后可保持135.5mAhg-1。这项工作为增强PEO基电解质的离子电导率和界面稳定性提供了一种策略,以及实现生物质基CMCS的资源化利用。
    Low ionic conductivity and poor interface stability of poly(ethylene oxide) (PEO) restrict the practical application as polymeric electrolyte films to prepare solid-state lithium (Li) metal batteries. In this work, biomass-based carboxymethyl chitosan (CMCS) is designed and developed as organic fillers into PEO matrix to form composite electrolytes (PEO@CMCS). Carboxymethyl groups of CMCS fillers can promote the decomposition of Lithium bis(trifluoromethane sulfonimide) (LiTFSI) to generate more lithium fluoride (LiF) at CMCS/PEO interface, which not only forms ionic conductive network to promote the rapid transfer of Li+ but also effectively enhances the interface stability between polymeric electrolyte and Li metal. The enrichment of carboxyl, hydroxyl, and amidogen functional groups within CMCS fillers can form hydrogen bonds with ethylene oxide (EO) chains to improve the tensile properties of PEO-based electrolyte. In addition, the high hardness of CMCS additives can also strengthen mechanical properties of PEO-based electrolyte to resist penetration of Li dendrites. LiLi symmetric batteries can achieve stable cycle for 2500 h and lithium iron phosphate full batteries can maintain 135.5 mAh g-1 after 400 cycles. This work provides a strategy for the enhancement of ion conductivity and interface stability of PEO-based electrolyte, as well as realizes the resource utilization of biomass-based CMCS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号