soil total phosphorus

  • 文章类型: Journal Article
    未来磷(P)短缺可能会严重影响陆地生产力和粮食安全。我们调查了中国森林表层土壤有效磷(AP)和总磷(TP)的变化,草原,稻田,基于大量重复的土壤磷测量(1980年代为63,220个样本,2000年,和2010年代)和机器学习技术。在20世纪80年代和2010年代之间,土壤总AP存量以0.13kgPha-1year-1的小但显著的速率增加,但是在四个生态系统中,土壤总TP储量大幅下降(4.5kgPha-1year-1)。我们通过协调这一时期来自各种来源的P通量来量化土壤-植物系统的P预算。将几十年来土壤含量的趋势与磷预算和通量相匹配,我们发现,与施肥相比,由于巨大的土壤TP池以及通过植物吸收和水蚀而导致的大量土壤P流失,抵消了P的增加,因此耕地(尤其是高地农田)中的P过剩可能被高估。我们对中国磷赤字的发现对未来生物质生产的可持续性(尤其是森林)提出了警告。强调农田磷回收的紧迫性,并强调国家一级基础数据在指导应对全球P危机的健全政策方面的关键作用。
    Future phosphorus (P) shortages could seriously affect terrestrial productivity and food security. We investigated the changes in topsoil available P (AP) and total P (TP) in China\'s forests, grasslands, paddy fields, and upland croplands during the 1980s-2010s based on substantial repeated soil P measurements (63,220 samples in the 1980s, 2000s, and 2010s) and machine learning techniques. Between the 1980s and 2010s, total soil AP stock increased with a small but significant rate of 0.13 kg P ha-1  year-1 , but total soil TP stock declined substantially (4.5 kg P ha-1  year-1 ) in the four ecosystems. We quantified the P budgets of soil-plant systems by harmonizing P fluxes from various sources for this period. Matching trends of soil contents over the decades with P budgets and fluxes, we found that the P-surplus in cultivated soils (especially in upland croplands) might be overestimated due to the great soil TP pool compared to fertilization and the substantial soil P losses through plant uptake and water erosion that offset the P additions. Our findings of P-deficit in China raise the alarm on the sustainability of future biomass production (especially in forests), highlight the urgency of P recycling in croplands, and emphasize the critical role of country-level basic data in guiding sound policies to tackle the global P crises.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    土壤有机碳(SOC),全氮(TN)和全磷(TP)是反映土壤质量的重要指标,可以有效地评价土壤修复效果。许多研究已经评估了SOC的含量,不同生态系统中的TN和TP。然而,在生态脆弱的沿海地区建设了保护森林以进行生态恢复之后,SOC的空间分布及影响机制,TN和TP含量仍不确定。在这项研究中,SOC的空间异质性及其影响因素,通过传统分析和地统计学分析了表层(0-20cm)土壤中的TN和TP。在沿海地区受保护的森林类型下总共收集了39个土壤样品,包括麻黄(QAC),黑松(PTP),在中国北方的沿海保护区森林中混合PTP和QAC(QP)和板栗(CMB)。结果表明,TN和TP含量定义为中等变化,在不同保护林类型下也表现出显著的变化(P<0.05)。半方差结果表明,SOC,TN和TP均表现出较强的空间依赖类,范围为224米,分别为229米和282米,大于200m的采样尺度。空间预测结果表明,TN和TP含量均出现在CMB中极低值的大面积区域,交叉验证结果表明,利用植被和地形因子作为协变量进行SOC空间预测,TN和TP可以提高预测精度。相关性分析结果表明,SOC和TN的影响因素,和TP是NDVI和地形变化,分别。总的来说,植被和地形因子作为辅助因子可以提高滨海地区造林后土壤C-N-P空间分布预测的准确性。
    Soil organic carbon (SOC), total nitrogen (TN) and total phosphorus (TP) are important indicators reflecting soil quality, and they can be used to effectively evaluate the effect of soil remediation. Many studies have evaluated the content of SOC, TN and TP in different ecosystems. However, after constructing protected forests for ecological restoration in the ecologically fragile coastal zone, the spatial distribution and influencing mechanism of SOC, TN and TP content is still uncertain. In this study, the spatial heterogeneity and influencing factors of SOC, TN and TP in surface (0-20 cm) soil were analyzed by traditional analysis and geostatistics. A total of 39 soil samples were collected under the coastal zone protected forest types including Quercus acutissima Carruth (QAC), Pinus thunbergii Parl (PTP), mixed PTP and QAC (QP) and Castanea mollissima BL (CMB) in the coastal zone protected forests in northern China. The results show that SOC, TN and TP content were defined as moderate variation, and they also show significant changes under different protected forest types (P < 0.05). The semivariance results indicate that SOC, TN and TP all exhibited strong spatial dependence class, with Range of 224 m, 229 m and 282 m respectively, which were more than the sampling scale of 200 m. The spatial prediction results showed that SOC, TN and TP content all appear in large areas of extremely low value in CMB, and its cross validation results showed that using vegetation and terrain factors as covariates in the spatial prediction of SOC, TN and TP can improve the prediction accuracy. The results of correlation analysis showed that the influencing factor for SOC and TN, and TP were NDVI and topographical changes, respectively. In general, vegetation and terrain factors as auxiliary factors can improved the accuracy of soil C-N-P spatial distribution prediction after afforestation in coastal zone.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Ecological restoration is widespread in the karst region, southwest China, but the impacts of different restoration strategies on soil fertility indices have rarely been compared. Here soil nutrients and microbial communities were measured 16 years after agricultural abandonment in a karst area, southwest China. Three restoration strategies were included, i.e., i) restoration with an economic tree species Toona sinensis (TS), ii) restoration with Guimu-1 hybrid elephant grass (GG), iii) restoration with a combination of Zenia insignis and Guimu-1 hybrid elephant grass (ZG). Cropland under maize-soybean rotation (CR) was used as reference. Soil organic carbon level was more than doubled in TS, and that in GG and ZG was elevated by about 50% relative to CR. Soil total nitrogen concentration in GG was not significantly different from CR, but that in TS and ZG was increased by 93% and 55% relative to CR. Similar to nitrogen, soil total phosphorus concentration in GG was not changed relative to CR, but that in TS and ZG were significantly increased. Microbial biomass carbon and nitrogen concentrations were significantly increased in TS and GG by 124% and 82%, respectively, compared to CR, but those in ZG and CR were similar. The abundance of total PLFAs (phospholipid fatty acids) was significantly increased by 55-69% following agricultural abandonment, and there was no significant difference among the three restoration strategies. The patterns of the other microbial groups and the ratio of fungal to bacterial (F:B) PLFAs were largely similar to that of total PLFAs. Soil organic carbon was identified as the primary factor affecting the abundance of soil microbial communities. Our findings suggest that the three restoration strategies, particularly TS are efficient in improving soil fertility.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Soil total nitrogen (STN) and total phosphorus (STP) are important indicators of soil nutrients and the important indexes of soil fertility and soil quality evaluation. Using geographic information system (GIS) and geostatistics, the spatial heterogeneity distribution of STN and STP in the Yaoxiang watershed in a hilly area of northern China was studied. The results showed that: (1) The STN and STP contents showed a declining trend with the increase in soil depth; the variation coefficients (Cv) of STN and STP in the 0- to 10-cm soil layer (42.25% and 14.77%, respectively) were higher than in the 10- to 30-cm soil layer (28.77% and 11.60%, respectively). Moreover, the Cv of STN was higher than that of STP. (2) The maximum C0/(C0 + C1) of STN and STP in the soil layers was less than 25%, this indicated that a strong spatial distribution autocorrelation existed for STN and STP; and the STP showed higher intensity and more stable variation than the STN. (3) From the correlation analysis, we concluded that the topographic indexes such as elevation and slope direction all influenced the spatial distribution of STN and STP (correlation coefficients were 0.688 and 0.518, respectively). (4) The overall distribution of STN and STP in the Yaoxiang watershed decreased from the northwest to the southeast. This variation trend was similar to the watershed DEM trend and was significantly influenced by vegetation and topographic factors. These results revealed the spatial heterogeneity distribution of STN and STP, and addressed the influences of forest vegetation coverage, elevation, and other topographic factors on the spatial distribution of STN and STP at the watershed scale.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号