sodium transport

钠转运
  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    钠摄入过多与肾结石有关,但缺乏钠(SD)饮食的影响是未知的。因此,我们研究了短期和长期SD饮食对肾脏水通道蛋白和钠转运蛋白表达的影响,从而在高草酸尿大鼠中形成草酸钙(CaOx)晶体。在一项短期钠平衡研究中,6只雄性大鼠接受饮用水,6只接受0.75%乙二醇(EG)诱导高草酸尿.在以正常食物进食30天后,两组均接受正常钠饮食治疗5天,然后在接下来的5天进行无钠饮食。在一项长期SD研究(42天)中,四组,是否用EG诱导,用普通钠水和无钠饮用水治疗,交替。EG大鼠短期限钠逆转每日钠平衡,但逐渐导致了负累积水平衡。在长期研究中,丰富的Na/H交换剂水平,噻嗪类敏感Na-Cl协同转运蛋白,Na-K-ATP酶,SD+EG大鼠的水通道蛋白-1明显减少,对应于Uosm的减少,与SD大鼠相比。增加尿钙,AP(CaOx)指数,在SD+EG大鼠中也观察到肾CaOx沉积。尽管SD治疗减少了钠排泄,它还增加了尿钙和肾功能受损,最终导致更多CaOx晶体的形成。
    Excessive sodium intake is associated with nephrolithiasis, but the impact of sodium-deficient (SD) diets is unknown. Hence, we investigated the effects of short- and long-term SD diets on the expression of renal aquaporins and sodium transporters, and thus calcium oxalate (CaOx) crystal formation in hyperoxaluria rats. In a short-term sodium balance study, six male rats received drinking water and six received 0.75% ethylene glycol (EG) to induce hyperoxaluria. After a 30-day period of feeding on normal chow, both groups were treated with a normal-sodium diet for 5 days, followed by a sodium-free diet for the next 5 days. In a long-term SD study (42 days), four groups, induced with EG or not, were treated with normal-sodium water and sodium-free drinking water, alternately. Short-term sodium restriction in EG rats reversed the daily positive sodium balance, but progressively caused a negative cumulative water balance. In the long-term study, the abundant levels of of Na/H exchanger, thiazide-sensitive Na-Cl cotransporter, Na-K-ATPase, and aquaporins-1 from SD + EG rats were markedly reduced, corresponding to a decrease in Uosm, as compared to SD rats. Increased urine calcium, AP(CaOx)index, and renal CaOx deposition were also noted in SD + EG rats. Although the SD treatment reduced sodium excretion, it also increased urinary calcium and impaired renal function, ultimately causing the formation of more CaOx crystals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    为了控制净钠(Na+)吸收,拟南芥植物利用质膜(PM)Na/H反转运蛋白SOS1在根部实现Na外排,并将Na装载到木质部,和通道样HKT1;1蛋白介导Na从木质部卸载的反向通量。一起,这些相对的运输系统控制着植物内Na的分配,但必须对其进行精细的共同调节,以防止木质部加载和卸载的徒劳循环。这里,我们表明,拟南芥SOS3蛋白作为控制这些Na+通量的分子开关,通过促进SOS1募集到PM和其随后由SOS2/SOS3激酶复合物在盐胁迫下的激活,同时指挥HKT1;1在急性苏打应激下蛋白质降解。SOS3通过与SOS1和HKT1的先前未识别的功能结构域直接且不依赖SOS2的结合来实现此作用;1.这些结果表明,根首先保留适量的盐以促进渗透调节,然而,当sodicity超过设定点时,依赖于SOS3的HKT1;1退化将平衡切换到根之外的Na+出口。因此,SOS3在功能上连接并共同调节维管植物中控制植物对盐度的耐受性的两个主要Na转运系统。
    To control net sodium (Na+) uptake, Arabidopsis plants utilize the plasma membrane (PM) Na+/H+ antiporter SOS1 to achieve Na+ efflux at the root and Na+ loading into the xylem, and the channel-like HKT1;1 protein that mediates the reverse flux of Na+ unloading off the xylem. Together, these opposing transport systems govern the partition of Na+ within the plant yet they must be finely co-regulated to prevent a futile cycle of xylem loading and unloading. Here, we show that the Arabidopsis SOS3 protein acts as the molecular switch governing these Na+ fluxes by favoring the recruitment of SOS1 to the PM and its subsequent activation by the SOS2/SOS3 kinase complex under salt stress, while commanding HKT1;1 protein degradation upon acute sodic stress. SOS3 achieves this role by direct and SOS2-independent binding to previously unrecognized functional domains of SOS1 and HKT1;1. These results indicate that roots first retain moderate amounts of salts to facilitate osmoregulation, yet when sodicity exceeds a set point, SOS3-dependent HKT1;1 degradation switches the balance toward Na+ export out of the root. Thus, SOS3 functionally links and co-regulates the two major Na+ transport systems operating in vascular plants controlling plant tolerance to salinity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Prevotellaceae家族的成员是革兰氏阴性的,在动物和人类微生物群中发现的专性厌氧细菌。在普雷沃塔,Na+转位NADH:醌氧化还原酶(NQR)和喹啉:富马酸还原酶(QFR)以甲基萘醌为电子载体相互作用,催化NADH:富马酸盐氧化还原。P.BryantiiNQR建立了钠动力,而布鲁日假单胞菌QFR对膜通电没有贡献。为了阐明可能的功能模式,我们提供了来自P.bryantii的NQR和QFR的3D结构模型来预测辅因子结合位点,电子转移途径和与底物的相互作用。分子对接揭示了甲基萘醌结合P.bryantiiNQR亚基NqrB的醌位点的拟议模式。将P.bryantiiQFR的3D模型与实验确定的结构进行比较,表明在这种类型的QFR中跨膜质子转运的替代途径。我们的发现与同时操作NQR和QFR的厌氧细菌中NADH依赖性琥珀酸的形成有关。
    Members of the family Prevotellaceae are Gram-negative, obligate anaerobic bacteria found in animal and human microbiota. In Prevotella bryantii, the Na+-translocating NADH:quinone oxidoreductase (NQR) and quinol:fumarate reductase (QFR) interact using menaquinone as electron carrier, catalyzing NADH:fumarate oxidoreduction. P. bryantii NQR establishes a sodium-motive force, whereas P. bryantii QFR does not contribute to membrane energization. To elucidate the possible mode of function, we present 3D structural models of NQR and QFR from P. bryantii to predict cofactor-binding sites, electron transfer routes and interaction with substrates. Molecular docking reveals the proposed mode of menaquinone binding to the quinone site of subunit NqrB of P. bryantii NQR. A comparison of the 3D model of P. bryantii QFR with experimentally determined structures suggests alternative pathways for transmembrane proton transport in this type of QFR. Our findings are relevant for NADH-dependent succinate formation in anaerobic bacteria which operate both NQR and QFR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    土壤盐分严重限制了作物的产量和质量。植物已经进化出几种策略来减轻盐度的不利影响,包括使用离子特异性转运蛋白对有毒离子进行再分配和划分。然而,这些离子转运蛋白的调节机制尚未完全阐明。OsHKT2的功能丧失突变体;1,与钠摄取有关,表现出强烈的耐盐胁迫表型。在这项研究中,OsHKT2;1被鉴定为B型反应调节因子OsRR22的转录靶标。功能丧失的osrr22突变体显示出对盐胁迫的抵抗力,OsRR22过表达植物对盐胁迫敏感。发现OsRR22通过直接结合OsHKT2的启动子区域来激活OsHKT2的表达。1通过B型反应调节因子的共有顺式元件。此外,水稻DELLA蛋白OsSLR1直接与OsRR22相互作用,并充当转录共激活因子。这项研究揭示了一种新的转录调节机制,通过该机制,B型反应调节剂在盐度胁迫下控制钠的运输。
    Soil salinity severely limits crop yields and quality. Plants have evolved several strategies to mitigate the adverse effects of salinity, including redistribution and compartmentalization of toxic ions using ion-specific transporters. However, the mechanisms underlying the regulation of these ion transporters have not been fully elucidated. Loss-of-function mutants of OsHKT2;1, which is involved in sodium uptake, exhibit strong salt stress-resistant phenotypes. In this study, OsHKT2;1 was identified as a transcriptional target of the type-B response regulator OsRR22. Loss-of-function osrr22 mutants showed resilience to salt stress, and OsRR22-overexpression plants were sensitive to salt stress. OsRR22 was found to activate the expression of OsHKT2;1 by directly binding to the promoter region of OsHKT2;1 via a consensus cis-element of type-B response regulators. Moreover, rice DELLA protein OsSLR1 directly interacted with OsRR22 and functioned as a transcriptional co-activator. This study has uncovered a novel transcriptional regulatory mechanism by which a type-B response regulator controls sodium transport under salinity stress.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    膜转运蛋白需要打开和关闭底物转运途径以进行单向转运的门控机制。“门控”涉及大的构象变化,并通过多步反应实现。然而,由于难以检测各个步骤,因此大多数转运蛋白尚未阐明这些基本步骤。这里,我们提出了这些步骤,用于细菌Na+泵视紫红质(NaR)的闸门打开,在照明时向外泵送Na+。我们在此解决了来自嗜碱性细菌的NaR的不对称二聚体结构。在一个protomer中,Arg108侧链朝向蛋白质中心,似乎阻断了向细胞外(EC)介质的Na释放途径。在另一个原型中,然而,该侧链向EC侧摆动,然后打开释放途径。假设后者的质子模拟Na+释放中间体,我们检查了Arg108侧链摆动的机制。在第一个探测器的EC表面上,存在由连接三个螺旋的Glu10、Glu159和Arg242残基组成的特征簇。相比之下,该簇在第二个质子发生器中被破坏。我们的实验结果表明,这种破坏是一个关键过程。簇破坏引起Glu159-Arg242对的向外移动,并同时旋转第七跨膜螺旋。该旋转结果为Arg108侧链的摆动运动打开了空间。因此,光反应过程中可能会发生簇破坏,然后触发导致栅极打开状态的顺序构象变化。
    Membrane transport proteins require a gating mechanism that opens and closes the substrate transport pathway to carry out unidirectional transport. The \"gating\" involves large conformational changes and is achieved via multistep reactions. However, these elementary steps have not been clarified for most transporters due to the difficulty of detecting the individual steps. Here, we propose these steps for the gate opening of the bacterial Na+ pump rhodopsin, which outwardly pumps Na+ upon illumination. We herein solved an asymmetric dimer structure of Na+ pump rhodopsin from the bacterium Indibacter alkaliphilus. In one protomer, the Arg108 sidechain is oriented toward the protein center and appears to block a Na+ release pathway to the extracellular (EC) medium. In the other protomer, however, this sidechain swings to the EC side and then opens the release pathway. Assuming that the latter protomer mimics the Na+-releasing intermediate, we examined the mechanism for the swing motion of the Arg108 sidechain. On the EC surface of the first protomer, there is a characteristic cluster consisting of Glu10, Glu159, and Arg242 residues connecting three helices. In contrast, this cluster is disrupted in the second protomer. Our experimental results suggested that this disruption is a key process. The cluster disruption induces the outward movement of the Glu159-Arg242 pair and simultaneously rotates the seventh transmembrane helix. This rotation resultantly opens a space for the swing motion of the Arg108 sidechain. Thus, cluster disruption might occur during the photoreaction and then trigger sequential conformation changes leading to the gate-open state.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:糖尿病肾病(DKD)是糖尿病(DM)的严重并发症。有人提出,在DKD发作期间,近端小管上皮细胞(PTEC)功能的修饰先于肾小球损伤。本研究旨在确定DM早期肾钠处理的修饰及其分子机制。
    方法:链脲佐菌素(STZ)诱导的糖尿病BALB/c小鼠(STZ组)和LLC-PK1细胞,PTEC的模型,被使用。在初始注射STZ后第4周评估所有参数。
    结果:早期DKD以超滤和PTEC功能障碍为特征。STZ组由于肾小管钠重吸收受损,尿钠排泄增加。这与皮质(NaK)ATPase(NKA)α1亚基表达和酶活性的降低以及O-GlcNAci化的增加有关。对DKD患者的RNAseq分析显示谷氨酰胺-果糖转氨酶(GFAT)基因的表达增加,己糖胺生物合成途径的限速步骤,NKA表达减少。用10μMthiametG孵育LLC-PK1细胞,O-GlcNAcase的抑制剂,降低NKA的表达和活性并增加O-GlcNAcylation。此外,6-重氮-5-氧代-L-正亮氨酸(DON),GFAT抑制剂,或者dapagliflozin,SGLT2抑制剂,避免了HG对与O-GlcNAcylation降低相关的NKA表达和活性的抑制作用。
    结论:我们的结果表明,肾小管钠重吸收的损害,在DM的早期阶段,是由于SGLT2介导的HG流入PTEC,O-GlcNAcylation增加,NKA表达和活性降低。
    Diabetic kidney disease (DKD) is a severe complication of diabetes mellitus (DM). It has been proposed that modifications in the function of proximal tubule epithelial cells (PTECs) precede glomerular damage during the onset of DKD. This study aimed to identify modifications in renal sodium handling in the early stage of DM and its molecular mechanism.
    Streptozotocin (STZ)-induced diabetic BALB/c mice (STZ group) and LLC-PK1 cells, a model of PTECs, were used. All parameters were assessed in the 4th week after an initial injection of STZ.
    Early stage of DKD was characterized by hyperfiltration and PTEC dysfunction. STZ group exhibited increased urinary sodium excretion due to impairment of tubular sodium reabsorption. This was correlated to a decrease in cortical (Na++K+)ATPase (NKA) α1 subunit expression and enzyme activity and an increase in O-GlcNAcylation. RNAseq analysis of patients with DKD revealed an increase in expression of the glutamine-fructose aminotransferase (GFAT) gene, a rate-limiting step of hexosamine biosynthetic pathway, and a decrease in NKA expression. Incubation of LLC-PK1 cells with 10 μM thiamet G, an inhibitor of O-GlcNAcase, reduced the expression and activity of NKA and increased O-GlcNAcylation. Furthermore, 6-diazo-5-oxo-L-norleucine (DON), a GFAT inhibitor, or dapagliflozin, an SGLT2 inhibitor, avoided the inhibitory effect of HG on expression and activity of NKA associated with the decrease in O-GlcNAcylation.
    Our results show that the impairment of tubular sodium reabsorption, in the early stage of DM, is due to SGLT2-mediated HG influx in PTECs, increase in O-GlcNAcylation and reduction in NKA expression and activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    高血压是一个主要的医疗保健问题,困扰着全球每三个成年人中的一个,并导致心血管疾病,发病率和死亡率。生物活性脂质通过对脉管系统的作用对血压调节做出重要贡献,肾,和炎症。生物活性脂质的血管作用包括降低血压的血管舒张和升高血压的血管收缩。肾中生物活性脂质释放的增加是促高血压的,而抗高血压生物活性脂质作用导致钠排泄增加。生物活性脂质具有促炎和抗炎作用,可增加或减少活性氧并影响高血压的血管和肾功能。人体研究提供了证据,表明脂肪酸代谢和生物活性脂质有助于高血压中的钠和血压调节。在人类中发现的影响花生四烯酸代谢的遗传变化与高血压有关。花生四烯酸环氧合酶,脂氧合酶和细胞色素P450代谢物具有促高血压和抗高血压作用。Omega-3鱼油脂肪酸二十碳五烯酸和二十二碳六烯酸已知具有抗高血压和心血管保护作用。最后,新兴的脂肪酸研究领域包括isolevuglandins的血压调节,硝化脂肪酸,和短链脂肪酸。一起来看,生物活性脂质是血压调节和高血压的关键贡献者,它们的操纵可以降低心血管疾病和相关的发病率和死亡率。
    Hypertension is a major healthcare issue that afflicts one in every three adults worldwide and contributes to cardiovascular diseases, morbidity and mortality. Bioactive lipids contribute importantly to blood pressure regulation via actions on the vasculature, kidney, and inflammation. Vascular actions of bioactive lipids include blood pressure lowering vasodilation and blood pressure elevating vasoconstriction. Increased renin release by bioactive lipids in the kidney is pro-hypertensive whereas anti-hypertensive bioactive lipid actions result in increased sodium excretion. Bioactive lipids have pro-inflammatory and anti-inflammatory actions that increase or decrease reactive oxygen species and impact vascular and kidney function in hypertension. Human studies provide evidence that fatty acid metabolism and bioactive lipids contribute to sodium and blood pressure regulation in hypertension. Genetic changes identified in humans that impact arachidonic acid metabolism have been associated with hypertension. Arachidonic acid cyclooxygenase, lipoxygenase and cytochrome P450 metabolites have pro-hypertensive and anti-hypertensive actions. Omega-3 fish oil fatty acids eicosapentaenoic acid and docosahexaenoic acid are known to be anti-hypertensive and cardiovascular protective. Lastly, emerging fatty acid research areas include blood pressure regulation by isolevuglandins, nitrated fatty acids, and short chain fatty acids. Taken together, bioactive lipids are key contributors to blood pressure regulation and hypertension and their manipulation could decrease cardiovascular disease and associated morbidity and mortality.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    噻嗪敏感的Na:Cl-协同转运蛋白(NCC)是哺乳动物远曲小管(DCT)顶膜中盐重吸收的主要途径,在控制血压中起着重要作用。共同转运蛋白是噻嗪类利尿剂的目标,一种高度处方的药物,可有效治疗动脉高血压和水肿。NCC是在分子水平上被鉴定的电中性阳离子偶联的氯化物协同转运蛋白家族的第一个成员。它是30年前从美洲假胸膜(冬季比目鱼)的膀胱中克隆出来的。结构拓扑,NCC的动力学和药理学特性已被广泛研究,确定跨膜结构域(TM)坐标离子和噻嗪结合。功能和突变研究发现了参与NCC磷酸化和糖基化的残基。特别是在N端域上,以及连接到TM7-8(EL7-8)的胞外环。在过去的十年里,单粒子低温电子显微镜(cryo-EM)允许在高原子分辨率下可视化SLC12家族的六个成员的结构(NCC,NKCC1,KCC1-KCC4)。NCC的Cryo-EM见解证实了TM1-5和TM6-10区域的反向构象,在氨基酸-多胺-器官定位(APC)超家族中也发现了一个特征,其中TM1和TM6清楚地协调离子结合。高分辨率结构还显示EL7-8中的两个糖基化位点(N-406和N-426),其对于NCC表达和功能是必需的。在这次审查中,我们简要介绍了有关NCC结构-功能关系的研究,从最初的生化/功能研究开始,直到最近获得的低温EM结构,以获得一个全面的观点,丰富了共同运输者的结构和功能方面。
    The thiazide sensitive Na+:Cl- cotransporter (NCC) is the principal via for salt reabsorption in the apical membrane of the distal convoluted tubule (DCT) in mammals and plays a fundamental role in managing blood pressure. The cotransporter is targeted by thiazide diuretics, a highly prescribed medication that is effective in treating arterial hypertension and edema. NCC was the first member of the electroneutral cation-coupled chloride cotransporter family to be identified at a molecular level. It was cloned from the urinary bladder of the Pseudopleuronectes americanus (winter flounder) 30 years ago. The structural topology, kinetic and pharmacology properties of NCC have been extensively studied, determining that the transmembrane domain (TM) coordinates ion and thiazide binding. Functional and mutational studies have discovered residues involved in the phosphorylation and glycosylation of NCC, particularly on the N-terminal domain, as well as the extracellular loop connected to TM7-8 (EL7-8). In the last decade, single-particle cryogenic electron microscopy (cryo-EM) has permitted the visualization of structures at high atomic resolution for six members of the SLC12 family (NCC, NKCC1, KCC1-KCC4). Cryo-EM insights of NCC confirm an inverted conformation of the TM1-5 and TM6-10 regions, a characteristic also found in the amino acid-polyamine-organocation (APC) superfamily, in which TM1 and TM6 clearly coordinate ion binding. The high-resolution structure also displays two glycosylation sites (N-406 and N-426) in EL7-8 that are essential for NCC expression and function. In this review, we briefly describe the studies related to the structure-function relationship of NCC, beginning with the first biochemical/functional studies up to the recent cryo-EM structure obtained, to acquire an overall view enriched with the structural and functional aspects of the cotransporter.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肾脏在维持广泛的饮食摄入中的总钠(Na+)平衡中起着至关重要的作用。通过涉及沿着肾单位的多个Na转运蛋白的协同努力来完成。此外,肾单位Na+重吸收和尿Na+排泄与肾血流量和肾小球滤过密切相关,因此它们中的任何一个的扰动都可以改变Na+沿着肾单位的运输,最终导致高血压和其他Na+滞留状态。在这篇文章中,我们提供了肾单位Na+转运的简短生理概述,并说明了影响Na+转运蛋白功能的临床综合征和治疗药物。我们强调肾脏Na+转运的最新进展,特别是免疫细胞的作用,淋巴管,和间质Na+调节Na+重吸收,钾(K+)作为Na+转运调节剂的出现,和肾单位的进化来调节Na+的转运。
    The kidneys play a critical role in maintaining total body sodium (Na+) balance across a wide range of dietary intake, accomplished by a concerted effort involving multiple Na+ transporters along the nephron. Furthermore, nephron Na+ reabsorption and urinary Na+ excretion are closely linked to renal blood flow and glomerular filtration such that perturbations in either of them can modify Na+ transport along the nephron, ultimately resulting in hypertension and other Na+-retentive states. In this article, we provide a brief physiological overview of nephron Na+ transport and illustrate clinical syndromes and therapeutic agents that affect Na+ transporter function. We highlight recent advances in kidney Na+ transport, particularly the role of immune cells, lymphatics, and interstitial Na+ in regulating Na+ reabsorption, the emergence of potassium (K+) as a regulator of Na+ transport, and the evolution of the nephron to modulate Na+ transport.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号