single-cell electrophysiology

  • 文章类型: Journal Article
    通过神经元的电生理表型表征神经元对于理解行为和认知功能的神经基础至关重要。技术发展使得能够收集数百个神经记录;这需要能够有效地执行特征提取的新工具。为了解决迫切需要一个强大和可访问的工具,我们开发了ElecFeX,一个基于MATLAB的开源工具箱,(1)具有直观的图形用户界面,(2)提供可定制的测量范围广泛的电生理特征,(3)通过批量分析毫不费力地处理大型数据集,和(4)产生格式化的输出以供进一步分析。我们在一组不同的神经记录上实现了ElecFeX;展示了它的功能,多功能性,以及捕获电特征的效率;并确立了其在区分跨大脑区域和物种的神经元亚群中的意义。因此,ElecFeX被呈现为用户友好的工具箱,通过最大限度地减少从其电生理数据集中提取特征所需的时间来使神经科学社区受益。
    Characterizing neurons by their electrophysiological phenotypes is essential for understanding the neural basis of behavioral and cognitive functions. Technological developments have enabled the collection of hundreds of neural recordings; this calls for new tools capable of performing feature extraction efficiently. To address the urgent need for a powerful and accessible tool, we developed ElecFeX, an open-source MATLAB-based toolbox that (1) has an intuitive graphical user interface, (2) provides customizable measurements for a wide range of electrophysiological features, (3) processes large-size datasets effortlessly via batch analysis, and (4) yields formatted output for further analysis. We implemented ElecFeX on a diverse set of neural recordings; demonstrated its functionality, versatility, and efficiency in capturing electrical features; and established its significance in distinguishing neuronal subgroups across brain regions and species. ElecFeX is thus presented as a user-friendly toolbox to benefit the neuroscience community by minimizing the time required for extracting features from their electrophysiological datasets.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    电活性电池的表征,比如神经元,要求测量其电性能。由于基因激活的差异,location,神经支配模式,和功能,哺乳动物大脑中的数百万个神经元在它们的膜特征和产生动作电位的能力方面是非常不同的。可以在全细胞电流钳配置中使用膜片钳技术测量这些特征,然后对发射模式进行详细的事后分析。这种分析可能很耗时,不同的实验室有自己的方法来执行它,手动或使用自定义编写的脚本。这里,我们以腹侧被盖区(VTA)神经元为例,详细描述了一种放电模式配准协议,并介绍了一种快速方便的分析软件。在这篇文章的帮助下,其他研究小组可以轻松地应用这种方法,并生成统一类型的数据,这些数据在大脑区域和各种研究之间具有可比性。图形摘要:协议的工作流程。
    Characterization of an electrically active cell, such as a neuron, demands measurement of its electrical properties. Due to differences in gene activation, location, innervation patterns, and functions, the millions of neurons in the mammalian brain are tremendously diverse in their membrane characteristics and abilities to generate action potentials. These features can be measured with a patch-clamp technique in whole-cell current-clamp configuration followed by detailed post-hoc analysis of firing patterns. This analysis can be time-consuming, and different laboratories have their own methods to perform it, either manually or with custom-written scripts. Here, we describe in detail a protocol for firing-pattern registration in neurons of the ventral tegmental area (VTA) as an example and introduce a software for its fast and convenient analysis. With the help of this article, other research groups can easily apply this method and generate unified types of data that are comparable between brain regions and various studies. Graphic abstract: Workflow of the Protocol.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号