single-atom catalysts

单原子催化剂
  • 文章类型: Journal Article
    直接甲醇燃料电池(DMFC)由于其工作温度低,因此代表了小型电子产品和汽车的非常有前途的替代电源。效率高,和能量密度。甲醇氧化过程(MOR)构成在DMFC的正电极处发生的基本化学反应。Pt基材料用作DMFC中广泛使用的MOR电催化剂。然而,各种挑战,例如反应速度缓慢,高生产成本主要归因于昂贵的铂基催化剂,以及CO中毒对Pt催化剂的不利影响,阻碍DMFC的商业化。因此,努力确定一种替代催化剂的铂基催化剂,减轻这些缺点代表了DMFC研究的关键焦点。为了实现这个目标,研究人员开发了不同类别的MOR电催化剂,包括来自贵金属和非贵金属的那些。这篇综述论文深入研究了MOR的基本概念及其运行机制,以及源自贵金属和非贵金属的电催化剂的最新进展,例如单原子和分子催化剂。此外,综合分析了MOR电催化剂的制约因素和前景,包括基于贵金属的那些和基于非贵金属的那些,已经进行了。
    The direct methanol fuel cell (DMFC) represents a highly promising alternative power source for small electronics and automobiles due to its low operating temperatures, high efficiency, and energy density. The methanol oxidation process (MOR) constitutes a fundamental chemical reaction occurring at the positive electrode of a DMFC. Pt-based materials serve as widely utilized MOR electrocatalysts in DMFCs. Nevertheless, various challenges, such as sluggish reaction rates, high production costs primarily attributed to the expensive Pt-based catalyst, and the adverse effects of CO poisoning on the Pt catalysts, hinder the commercialization of DMFCs. Consequently, endeavors to identify an alternative catalyst to Pt-based catalysts that mitigate these drawbacks represent a critical focal point of DMFC research. In pursuit of this objective, researchers have developed diverse classes of MOR electrocatalysts, encompassing those derived from noble and non-noble metals. This review paper delves into the fundamental concept of MOR and its operational mechanisms, as well as the latest advancements in electrocatalysts derived from noble and non-noble metals, such as single-atom and molecule catalysts. Moreover, a comprehensive analysis of the constraints and prospects of MOR electrocatalysts, encompassing those based on noble metals and those based on non-noble metals, has been undertaken.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    探索作为氧还原反应(ORR)的铂(Pt)替代品的高活性电催化剂仍然是一个重大挑战。在这项工作中,具有和不具有卤素配体的单Mn嵌入氮掺杂石墨烯(MnN4)(F,Cl,Br,和I)通过密度泛函理论(DFT)计算系统地研究了改性。计算结果表明,这些配体可以将Mn原子在费米能级附近的dyz和dxz轨道转换为dz2轨道,并将d带中心从费米能级移开,以降低反应中间体的吸附能力,从而提高MnN4的ORR催化活性。值得注意的是,Br和I改性的MnN4分别具有0.41和0.39V的最低过电位,具有优越的ORR催化活性。这项工作有助于全面理解单原子催化剂的配体修饰机理,并开发高活性的ORR电催化剂。
    Exploring highly active electrocatalysts as platinum (Pt) substitutes for the oxygen reduction reaction (ORR) remains a significant challenge. In this work, single Mn embedded nitrogen-doped graphene (MnN4) with and without halogen ligands (F, Cl, Br, and I) modifying were systematically investigated by density functional theory (DFT) calculations. The calculated results indicated that these ligands can transform the dyz and dxz orbitals of Mn atom in MnN4 near the Fermi-level into dz2 orbital, and shift the d-band center away from the Fermi-level to reduce the adsorption capacity for reaction intermediates, thus enhancing the ORR catalytic activity of MnN4. Notably, Br and I modified MnN4 respectively with the lowest overpotentials of 0.41 and 0.39 V, possess superior ORR catalytic activity. This work is helpful for comprehensively understanding the ligand modification mechanism of single-atom catalysts and develops highly active ORR electrocatalysts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在过去的十年中,用于优化单原子催化剂(SAC)催化性能的配位工程策略得到了迅速发展。然而,以前关于硝酸盐还原反应(NO3RR)的铜SAC的报道主要集中在对称配位构型上,例如Cu-N4和Cu-N3。此外,SACs的配位环境和催化性质的调控机制尚未得到很好的证实。在这里,我们通过引入Cu-O和Cu-N的不饱和杂原子配位来破坏铜原子的局部对称结构,以实现Cu-N1O2SAC的配位去对称化。Cu-N1O2SAC表现出有效的硝酸盐到氨的转化,具有〜96.5%的高FE和相对于RHE的-0.60V的3120μgNH3h-1cm-2的产率。如原位拉曼光谱所示,催化剂促进了NO3-的积累和*NO2的选择性吸附,这在表面偶极矩和轨道杂化的理论研究中得到了进一步证实。我们的工作说明了配位去对称化与铜SAC对NO3RR的催化性能之间的相关性。
    Coordination engineering strategy for optimizing the catalytic performance of single-atom catalysts (SACs) has been rapidly developed over the last decade. However, previous reports on copper SACs for nitrate reduction reactions (NO3RR) have mostly focused on symmetric coordination configurations such as Cu-N4 and Cu-N3. In addition, the mechanism in terms of the regulation of coordination environment and catalytic properties of SACs has not been well demonstrated. Herein, we disrupted the local symmetric structure of copper atoms by introducing unsaturated heteroatomic coordination of Cu-O and Cu-N to achieve the coordination desymmetrization of Cu-N1O2 SACs. The Cu-N1O2 SACs exhibit an efficient nitrate-to-ammonia conversion with a high FE of ~96.5 % and a yield rate of 3120 μg NH3 h-1 cm-2 at -0.60 V vs RHE. As indicated by in situ Raman spectra, the catalysts facilitate the accumulation of NO3 - and the selective adsorption of *NO2, which were further confirmed by the theoretical study of surface dipole moment and orbital hybridization. Our work illustrated the correlation between the coordination desymmetrization and the catalytic performance of copper SACs for NO3RR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    酸性水电解需要设计高性能铱(Ir)单原子催化剂,由于其对酸性析氧反应(OER)的高催化活性,并且对贵金属Ir的使用量最少,因此显示出巨大的潜力。然而,在OER操作期间稳定Ir单原子而不牺牲活性仍然是一个重大挑战。这里,我们报告了通过将Ir单原子固定在聚酰亚胺载体上的高性能OER催化剂,其在碳纸电极上表现出高的质量活性,同时在360小时内实现具有可忽略的衰减的出色稳定性。与没有聚酰亚胺载体制备的对应电极相比,所得电极(表示为Ir1-PI@CP)在质量活性上达到49.7倍的改善。我们的实验和理论结果都表明,由于强大的金属-载体相互作用,聚酰亚胺载体可以增强Ir1-PI@CP中Ir单原子的Ir5d态,它可以调整中间体的吸附能,并在OER的速率决定步骤降低热力学势垒,而且还促进了质子-电子转移过程并改善了反应动力学。这项工作为开发单原子催化剂提供了一种替代途径,该催化剂对各种催化系统及其他系统具有优异的活性和耐久性。
    Designing a high-performing iridium (Ir) single-atom catalyst is desired for acidic water electrolysis, which shows enormous potential given its high catalytic activity toward acidic oxygen evolution reaction (OER) with minimum usage of precious Ir metal. However, it still remains a substantial challenge to stabilize the Ir single atoms during the OER operation without sacrificing the activity. Here, we report a high-performing OER catalyst by immobilizing Ir single atoms on a polyimide support, which exhibits a high mass activity on a carbon paper electrode while simultaneously achieving outstanding stability with negligible decay for 360 h. The resulting electrode (denoted as Ir1-PI@CP) reaches a 49.7-fold improvement in mass activity compared to the counterpart electrode prepared without polyimide support. Both our experimental and theoretical results suggest that, owing to the strong metal-support interactions, the polyimide support can enhance the Ir 5d states of Ir single atoms in Ir1-PI@CP, which can tailor the adsorption energies of intermediates and decrease the thermodynamic barrier at the rate-determining step of the OER, but also facilitate the proton-electron-transfer process and improve the reaction kinetics. This work offers an alternative avenue for developing single-atom catalysts with superior activity and durability toward various catalytic systems and beyond.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    从氮源生产氨(NH3)涉及不同中间体的竞争性吸附和多个电子和质子转移,在催化剂设计中提出了巨大的挑战。在自然界中,固氮酶使用两种成分蛋白质将氮还原为NH3,其中电子和质子从Fe蛋白递送至MoFe蛋白中的活性位点以转移至结合的N2。我们从这种结构酶学中获得灵感,并设计了由硫掺杂的碳负载的钌(Ru)单原子(SAs)和纳米颗粒(NP)组成的两组分金属-硫-碳(M-S-C)催化剂,用于电化学还原硝酸盐(NO3-)到NH3。该催化剂在200小时内表现出显著的NH3产率约为37mgL-1h-1,法拉第效率约为97%,表现优于仅由SA或NP组成的那些,甚至超过大多数报道的电催化剂。我们的实验和理论研究揭示了RuSA与S的配位在促进HONO中间体的形成以及随后在NP表面附近的还原反应中的关键作用。这项研究证明了对M-S-Cs在氨合成过程中如何作为合成固氮酶模拟物的更好理解,并有助于未来基于机理的催化剂设计。
    The production of ammonia (NH3) from nitrogen sources involves competitive adsorption of different intermediates and multiple electron and proton transfers, presenting grand challenges in catalyst design. In nature nitrogenases reduce dinitrogen to NH3 using two component proteins, in which electrons and protons are delivered from Fe protein to the active site in MoFe protein for transfer to the bound N2. We draw inspiration from this structural enzymology, and design a two-component metal-sulfur-carbon (M-S-C) catalyst composed of sulfur-doped carbon-supported ruthenium (Ru) single atoms (SAs) and nanoparticles (NPs) for the electrochemical reduction of nitrate (NO3-) to NH3. The catalyst demonstrates a remarkable NH3 yield rate of ~37 mg L-1 h-1 and a Faradaic efficiency of ~97% for over 200 hours, outperforming those consisting solely of SAs or NPs, and even surpassing most reported electrocatalysts. Our experimental and theoretical investigations reveal the critical role of Ru SAs with the coordination of S in promoting the formation of the HONO intermediate and the subsequent reduction reaction over the NP-surface nearby. This study proves a better understanding of how M-S-Cs act as a synthetic nitrogenase mimic during ammonia synthesis, and contributes to the future mechanism-based catalyst design.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    氨(NH3)是一种用途广泛的重要化合物,目前是通过要求苛刻的哈伯-博世工艺生产的。电催化硝酸盐还原成氨(NRA)最近已成为在环境条件下合成NH3的可持续方法。然而,NRA催化是一个复杂的多步骤电化学过程,具有竞争性的析氢反应,通常导致NH3合成的选择性差和产率低。具有最大的原子利用率和明确的催化位点,单原子催化剂(SAC)表现出高活性,对各种催化反应的选择性和稳定性。最近,许多SAC已被开发为有前途的NRA电催化剂,但迄今为止,尚未对影响其NRA绩效的关键因素进行系统讨论。这篇综述集中在SAC在NRA催化方面的最新突破,包括催化剂制备,催化剂表征和理论见解。此外,讨论了提高SACNRA绩效的挑战和机遇,目的是在开发用于高效NH3合成的高性能SAC方面取得进一步进展。
    Ammonia (NH3) is a versatile and important compound with a wide range of uses, which is currently produced through the demanding Haber-Bosch process. Electrocatalytic nitrate reduction into ammonia (NRA) has recently emerged as a sustainable approach for NH3synthesis under ambient conditions. However, the NRA catalysis is a complex multistep electrochemical process with competitive hydrogen evolution reaction that usually results in poor selectivity and low yield rate for NH3synthesis. With maximum atom utilization and well-defined catalytic sites, single atom catalysts (SACs) display high activity, selectivity and stability toward various catalytic reactions. Very recently, a number of SACs have been developed as promising NRA electrocatalysts, but systematical discussion about the key factors that affect their NRA performance is not yet to be summarized to date. This review focuses on the latest breakthroughs of SACs toward NRA catalysis, including catalyst preparation, catalyst characterization and theoretical insights. Moreover, the challenges and opportunities for improving the NRA performance of SACs are discussed, with an aim to achieve further advancement in developing high-performance SACs for efficient NH3synthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    抗生素抗性细菌(ARBs)在废水中被广泛检测到,对人类健康构成潜在威胁。这项工作发现,锚定在g-C3N4(SA-Cu/g-C3N4)上的低负载单原子铜(0.1wt%)在光Fenton过程中表现出优异的活化H2O2和失活ARB的能力。SA-Cu/g-C3N4(0.4mg/mL)和H2O2(0.1mM)的存在有效地灭活了ARB。超过99.9999%(6-log)的耐甲氧西林金黄色葡萄球菌(MRSA),耐碳青霉烯类鲍曼不动杆菌(CRAB)可在5min内灭活。产超广谱β-内酰胺酶的致病性大肠杆菌(ESBL-E)和耐万古霉素的屎肠球菌(VRE)在10分钟和30分钟内被杀死,分别。此外,在实际废水中,超过5-log的这些ARB在60分钟内被杀死。此外,拉曼光谱的D2O标记表明,SA-Cu/g-C3N4完全抑制了细菌的存活但不可培养(VBNC)状态和再活化。电子顺磁共振光谱结果表明,g-C3N4主要产生1O2,而SA-Cu/g-C3N4同时产生1O2和·OH。•OH和1O2对细胞膜造成脂质过氧化损伤,导致细菌死亡。这些发现强调了SA-Cu/g-C3N4催化剂是用于废水中ARBs失活的有前途的光Fenton催化剂。
    Antibiotic-resistant bacteria (ARBs) have been widely detected in wastewater and become a potential threat to human health. This work found that low-load single-atom copper (0.1 wt%) anchored on g-C3N4 (SA-Cu/g-C3N4) exhibited excellent ability to activate H2O2 and inactivate ARBs during the photo-Fenton process. The presence of SA-Cu/g-C3N4 (0.4 mg/mL) and H2O2 (0.1 mM) effectively inactivated ARBs. More than 99.9999 % (6-log) of methicillin-resistant Staphylococcus aureus (MRSA), and carbapenem-resistant Acinetobacter baumannii (CRAB) could be inactivated within 5 min. Extended-spectrum β-lactamase-producing pathogenic Escherichia coli (ESBL-E) and vancomycin-resistant Enterococcus faecium (VRE) were killed within 10 and 30 min, respectively. In addition, more than 5-log of these ARBs were killed within 60 min in real wastewater. Furthermore, D2O-labeling with Raman spectroscopy revealed that SA-Cu/g-C3N4 completely suppressed the viable but nonculturable (VBNC) state and reactivation of bacteria. Electron paramagnetic resonance spectroscopy results demonstrated that g-C3N4 mainly produced 1O2, while SA-Cu/g-C3N4 simultaneously produced both 1O2 and •OH. The •OH and 1O2 cause lipid peroxidation damage to the cell membrane, resulting in the death of the bacteria. These findings highlight that the SA-Cu/g-C3N4 catalyst is a promising photo-Fenton catalyst for the inactivation of ARBs in wastewater.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    操纵单原子催化剂(SAC)中中心金属原子的局部配位环境是开发具有最佳电子结构的高效SAC用于各种应用的强大策略。在这里,已开发出Co-SAC,其特征是Co单原子与分散在氮掺杂的碳基质中的第二壳中的配位S原子。通过基于同步加速器的X射线吸收光谱和理论计算,验证了S原子在Co-SAC模型中的位置。所得的含有第二配位壳S原子的Co-SAC表现出优异的活性和优异的选择性氢化耐久性,优于大多数贵金属基催化剂。原位表征和理论结果证实,高活性和选择性归因于对氯硝基苯和Co1N4-S部分上Co原子之间Co-O键的有利形成以及反应的较低自由能和能垒。我们的发现揭示了SAC的性能与第二壳配位原子之间的相关性。
    Manipulating the local coordination environment of central metal atoms in single-atom catalysts (SACs) is a powerful strategy to exploit efficient SACs with optimal electronic structures for various applications. Herein, Co-SACs featured by Co single atoms with coordinating S atoms in the second shell dispersed in a nitrogen-doped carbon matrix have been developed toward the selective hydrogenation of halo-nitrobenzene. The location of the S atom in the model Co-SAC is verified through synchrotron-based X-ray absorption spectroscopy and theoretical calculations. The resultant Co-SACs containing second-coordination shell S atoms demonstrate excellent activity and outstanding durability for selective hydrogenation, superior to most precious metal-based catalysts. In situ characterizations and theoretical results verify that high activity and selectivity are attributed to the advantageous formation of the Co-O bond between p-chloronitrobenzene and Co atom at Co1N4-S moieties and the lower free energy and energy barriers of the reaction. Our findings unveil the correlation between the performance and second-shell coordination atom of SACs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在所需的局部化学环境下精确调节单原子催化剂(SAC)对于阐明SAC结构与催化性能之间的关系至关重要。即使对于具有相同组成和化学性质的SAC,关于局部协调环境的影响的辩论也相当复杂。呼吁加强对第二协调壳的监管。对于氧化物支持的SAC,由于氧化物的结构坚固性,精确操纵负载在氧化物上的单原子的第二配位壳仍然是一个重大挑战。这里,Ir单原子通过不同的键合策略锚定在NiO载体上,导致Ir位点的不同Ir-O-Ni配位数。具体来说,Ir1/NiO,Ir1-NiO,合成了Ir-O-Ni配位数为3、4和5的Ir1@NiOSAC,分别。我们发现三个样品对析氧反应(OER)的活性与Ir-O-Ni配位数呈火山状关系,Ir1-NiO在10mAcm-2时显示出225mV的最低超电势。机理研究表明,Ir1-NiO中Ir-O-Ni的中等配位数产生了较高的Irdz2轨道,削弱*OOH中间体的吸附强度,从而增强OER活性。
    The precise regulation of single-atom catalysts (SACs) with the desired local chemical environment is vital to elucidate the relationship between the SACs structure and the catalytic performance. The debate on the effect of the local coordination environment is quite complicated even for the SACs with the same composition and chemical nature, calling for increased attention on the regulation of second coordination shell. For oxide-supported SACs, it remains a significant challenge to precisely manipulate the second coordination shell of single atoms supported on oxides due to the structural robustness of oxides. Here, Ir single atoms are anchored on NiO supports via different bonding strategies, resulting in the diverse Ir-O-Ni coordination numbers for Ir sites. Specifically, Ir1/NiO, Ir1-NiO, and Ir1@NiO SACs with increasing Ir-O-Ni coordination numbers of 3, 4, and 5 were synthesized, respectively. We found that the activity of the three samples towards oxygen evolution reaction (OER) exhibited a volcano-shaped relationship with the Ir-O-Ni coordination number, with Ir1-NiO showing the lowest overpotential of 225 mV at 10 mA cm-2. Mechanism investigations indicate that the moderate coordination number of Ir-O-Ni in Ir1-NiO creates the higher occupied Ir dz2 orbital, weakening the adsorption strength for *OOH intermediates and thereby enhancing the OER activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    过渡金属(TM)单原子催化剂(SAC)已广泛应用于光催化还原CO2。在这项工作中,引入n-p共掺杂工程,以通过使用第一性原理计算来解决二维(2D)卤化铋基阴极上光催化CO2还原的调制。n-p共掺杂是通过掺杂剂-缺陷对中带负电荷的TMSAC和带正电荷的Cl空位(VCl)之间的库仑相互作用建立的。根据带电缺陷的形成能量,Fe的中性掺杂剂-缺陷对,Co,和NiSAC(PTM0)和基于CuSAC的对(PCu-1)的-1e电荷状态是稳定的。n-p共掺杂的静电吸引通过中和带相反电荷的VCl缺陷和TM掺杂剂来增强TMSAC的稳定性和溶解性。n-p共掺杂使TMSAC周围的电子积累稳定。积累的电子改变了d轨道对准,并使d带中心向费米能级移动,基于d波段理论提高TMSAC的降容能力。除了n-p共掺杂的静电引力之外,PCu-1还在CuSAC周围积累额外的电子,并形成半占据的dx2-y2状态,这进一步上调了d带中心并改善了光催化CO2还原。Cl多分子的亚稳态限制了具有Cl多分子的n-p对的浓度(PTM@nCl(n>1))。PTM@nCl(n>1)周围的正电荷中心通过屏蔽向CO2分子的电荷转移来阻碍CO2还原。
    Transition metal (TM) single-atom catalysts (SACs) have been widely applied in photocatalytic CO2 reduction. In this work, n-p codoping engineering is introduced to account for the modulation of photocatalytic CO2 reduction on a two-dimensional (2D) bismuth-oxyhalide-based cathode by using first-principles calculation. n-p codoping is established via the Coulomb interactions between the negatively charged TM SACs and the positively charged Cl vacancy (VCl) in the dopant-defect pairs. Based on the formation energy of charged defects, neutral dopant-defect pairs for the Fe, Co, and Ni SACs (PTM0) and the -1e charge state of the Cu SAC-based pair (PCu-1) are stable. The electrostatic attraction of the n-p codoping strengthens the stability and solubility of TM SACs by neutralizing the oppositely charged VCl defect and TM dopant. The n-p codoping stabilizes the electron accumulation around the TM SACs. Accumulated electrons modify the d-orbital alignment and shift the d-band center toward the Fermi level, enhancing the reducing capacity of TM SACs based on the d-band theory. Besides the electrostatic attraction of the n-p codoping, the PCu-1 also accumulates additional electrons surrounding Cu SACs and forms a half-occupied dx2-y2 state, which further upshifts the d-band center and improves photocatalytic CO2 reduction. The metastability of Cl multivacancies limits the concentration of the n-p pairs with Cl multivacancies (PTM@nCl (n > 1)). Positively charged centers around the PTM@nCl (n > 1) hinders the CO2 reduction by shielding the charge transfer to the CO2 molecule.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号