single‐atom nanozyme

单原子纳米酶
  • 文章类型: Journal Article
    通过纳米酶对内源性H2O2的干预提供了一种潜在的抗肿瘤特异性疗法;然而,纳米酶结构与H2O2选择性分解为羟基自由基(•OH)有关的作用尚未完全了解,这限制了这种治疗方法的发展。在这里,报道了一种铁单原子纳米酶(Fe─N2Cl2─CSAzyme),它是通过精确的Fe-Cl配位制备的,基于特征的含Fe分子的构建。Fe─N2Cl2─C表现出有效的催化H2O2分解(2.19×106mm-1s-1),这是报告的SAzymes中最高的。更重要的是,发现H2O2在Fe─N2Cl2─C表面选择性地分解成·OH,这归因于Fe活性中心的d轨道与吸附的氢氧化物(*OH)中间体的O-2p电子相匹配。Fe─N2Cl2─C在体外对多种癌细胞系具有强烈的细胞毒性,但对正常细胞不具有细胞毒性。此外,Fe─N2Cl2─C在体内表现出突出的特异性治疗效果;它有效地破坏了实体恶性肿瘤,而不损伤正常组织。总之,这些发现强调了H2O2选择性催化分解为·OH,这是通过在原子级上设计活动中心来实现的,从而为开发具有有效抗肿瘤活性的特定纳米药物提供了途径。
    The intervention of endogenous H2O2 via nanozymes provides a potential antitumor-specific therapy; however, the role of the nanozyme structure in relation to the selective decomposition of H2O2 to hydroxyl radicals (•OH) is yet to be fully understood, which limits the development of this therapeutic approaches. Herein, an iron single-atom nanozyme (Fe─N2Cl2─C SAzyme) is reported, which is prepared through precise Fe─Cl coordination based on the construction of a characteristic Fe-containing molecule. Fe─N2Cl2─C exhibits efficient catalytic H2O2 decomposition (2.19 × 106 mm-1 s-1), which is the highest among reported SAzymes. More importantly, it is found that H2O2 selectively decomposed into •OH on the Fe─N2Cl2─C surface, which is attributable to the d orbitals of the Fe active center matching the O-2p electrons of the adsorbed hydroxide (*OH) intermediate. Fe─N2Cl2─C is strongly cytotoxic toward a variety of cancer-cell lines in vitro but not to normal cells. Furthermore, Fe─N2Cl2─C shows an outstanding specific therapeutic effect in vivo; it efficiently destroys solid malignant tumors without injuring normal tissue. Altogether, these findings highlight the selective catalytic decomposition of H2O2 to •OH, which is achieved by engineering the active center on the atomic level, thereby providing an avenue for the development of specific nanomedicines with efficient antitumor activities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    增加细胞免疫原性和重塑免疫肿瘤微环境(TME)对于抗肿瘤免疫治疗至关重要。在这里,我们开发了一种新型的单原子纳米酶解热引发剂:UK5099和丙酮酸氧化酶(POx)共负载的Cu-NS单原子纳米酶(Cu-NS@UK@POx),这不仅通过级联生物催化引发焦亡以增强肿瘤细胞的免疫原性,而且还通过靶向丙酮酸代谢来重塑免疫抑制性TME。通过用弱负电性S代替N,改变了原来Cu-N4电子分布的空间对称性,有效地调控了酶催化过程。与空间对称Cu-N4单原子纳米酶(Cu-N4SA)相比,S掺杂的空间非对称单原子纳米酶(Cu-NSSA)表现出更强的氧化酶活性,包括过氧化物酶(POD),烟酰胺腺嘌呤二核苷酸(NADH)氧化酶(NOx),L-半胱氨酸氧化酶(LCO)和谷胱甘肽氧化酶(GSHOx),这可能会导致足够的活性氧(ROS)风暴触发焦亡。此外,Cu-NSSA的协同作用,UK5099和POx可以靶向丙酮酸代谢,这不仅提高了免疫TME,而且增加了焦亡的程度。这项研究提供了一种双管齐下的治疗策略,可以通过ROS风暴显着激活抗肿瘤免疫治疗作用,NADH/谷胱甘肽/L-半胱氨酸消耗,丙酮酸氧化,和乳酸/ATP消耗,触发焦亡和调节新陈代谢。这项工作为扩大抗肿瘤免疫治疗提供了广阔的视野。本文受版权保护。保留所有权利。
    Increasing cellular immunogenicity and reshaping the immune tumor microenvironment (TME) are crucial for antitumor immunotherapy. Herein, this work develops a novel single-atom nanozyme pyroptosis initiator: UK5099 and pyruvate oxidase (POx)-co-loaded Cu-NS single-atom nanozyme (Cu-NS@UK@POx), that not only trigger pyroptosis through cascade biocatalysis to boost the immunogenicity of tumor cells, but also remodel the immunosuppressive TME by targeting pyruvate metabolism. By replacing N with weakly electronegative S, the original spatial symmetry of the Cu-N4 electron distribution is changed and the enzyme-catalyzed process is effectively regulated. Compared to spatially symmetric Cu-N4 single-atom nanozymes (Cu-N4 SA), the S-doped spatially asymmetric single-atom nanozymes (Cu-NS SA) exhibit stronger oxidase activities, including peroxidase (POD), nicotinamide adenine dinucleotide (NADH) oxidase (NOx), L-cysteine oxidase (LCO), and glutathione oxidase (GSHOx), which can cause enough reactive oxygen species (ROS) storms to trigger pyroptosis. Moreover, the synergistic effect of Cu-NS SA, UK5099, and POx can target pyruvate metabolism, which not only improves the immune TME but also increases the degree of pyroptosis. This study provides a two-pronged treatment strategy that can significantly activate antitumor immunotherapy effects via ROS storms, NADH/glutathione/L-cysteine consumption, pyruvate oxidation, and lactic acid (LA)/ATP depletion, triggering pyroptosis and regulating metabolism. This work provides a broad vision for expanding antitumor immunotherapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肿瘤微环境(TME)诱导的纳米催化疗法是一种有前途的癌症治疗策略。但低催化效率限制了其治疗效果。单原子催化剂(SAC)是一种新型的纳米酶,具有令人难以置信的催化效率。这里,构建了单原子锰(Mn)-N/C纳米酶。Mn-N/C通过类Fenton反应催化细胞H2O2转化为OH,并能够充分产生活性氧(ROS),它诱导肿瘤细胞的免疫原性细胞死亡(ICD)并显着促进CD8T抗肿瘤免疫。此外,RNA测序分析显示,Mn-N/C处理激活I型干扰素(IFN)信号,这对于Mn-N/C介导的抗肿瘤免疫应答至关重要。机械上,Mn-N/C触发的胞浆DNA和Mn2+的释放共同激活了cGAS-STING途径,随后刺激I型IFN诱导。一种高效的单原子纳米酶,Mn-N/C,与抗PD-L1阻断联合增强抗肿瘤免疫反应并表现出协同治疗效果,是提议的。
    Tumor microenvironment (TME)-induced nanocatalytic therapy is a promising strategy for cancer treatment, but the low catalytic efficiency limits its therapeutic efficacy. Single-atom catalysts (SACs) are a new type of nanozyme with incredible catalytic efficiency. Here, a single-atom manganese (Mn)-N/C nanozyme is constructed. Mn-N/C catalyzes the conversion of cellular H2O2 to ∙OH through a Fenton-like reaction and enables the sufficient generation of reactive oxygen species (ROS), which induces immunogenic cell death (ICD) of tumor cells and significantly promotes CD8+T anti-tumor immunity. Moreover, RNA sequencing analysis reveals that Mn-N/C treatment activates type I interferon (IFN) signaling, which is critical for Mn-N/C-mediated anti-tumor immune response. Mechanistically, the release of cytosolic DNA and Mn2+ triggered by Mn-N/C collectively activates the cGAS-STING pathway, subsequently stimulating type I IFN induction. A highly efficient single-atom nanozyme, Mn-N/C, which enhances anti-tumor immune response and exhibits synergistic therapeutic effects when combined with the anti-PD-L1 blockade, is proposed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    单原子纳米酶(SAzymes),具有明确和统一的原子结构,是一种新兴的天然酶模拟物。目前,合理设计高性能的SAzyes,深入揭示SAzyes与底物分子的相互作用机制是重要但具有挑战性的。在这里,我们报道了通过基于化学气相沉积的硫工程策略可控地制造独特的以Cu-N1S2为中心的SAzyme(Cu-N/S-C)。受益于单原子位点优化的几何和电子结构,Cu-N/S-CSAzyme显示出增强的类酶活性,尤其是过氧化氢酶样活性,与具有Cu-N3位点的Cu-N-CSAzyme相比,对H2O2底物的亲和力增加了13.8倍,催化效率增加了65.2倍。进一步的理论研究表明,单原子Cu周围的电子密度增加是通过电子再分布实现的,Cu-N/S-C与H2O2之间的有效电荷转移被证明更有利于H2O2的吸附和活化。设计的Cu-N/S-CSAzyme通过催化疗法和氧依赖性光疗的协同作用具有出色的抗肿瘤作用。本研究为SAzymes的合理设计提供了策略,所提出的电子再分布和电荷转移机制将有助于理解单原子金属位点对H2O2介导的类酶催化过程的配位环境效应。本文受版权保护。保留所有权利。
    Single-atom nanozymes (SAzymes), with well-defined and uniform atomic structures, are an emerging type of natural enzyme mimics. Currently, it is important but challenging to rationally design high-performance SAzymes and deeply reveal the interaction mechanism between SAzymes and substrate molecules. Herein, this work reports the controllable fabrication of a unique Cu-N1S2-centred SAzyme (Cu-N/S-C) via a chemical vapor deposition-based sulfur-engineering strategy. Benefiting from the optimized geometric and electronic structures of single-atom sites, Cu-N/S-C SAzyme shows boosted enzyme-like activity, especially in catalase-like activity, with a 13.8-fold increase in the affinity to hydrogen peroxide (H2O2) substrate and a 65.2-fold increase in the catalytic efficiency when compared to Cu-N-C SAzyme with Cu-N3 sites. Further theoretical studies reveal that the increased electron density around single-atom Cu is achieved through electron redistribution, and the efficient charge transfer between Cu-N/S-C and H2O2 is demonstrated to be more beneficial for the adsorption and activation of H2O2. The as-designed Cu-N/S-C SAzyme possesses an excellent antitumor effect through the synergy of catalytic therapy and oxygen-dependent phototherapy. This study provides a strategy for the rational design of SAzymes, and the proposed electron redistribution and charge transfer mechanism will help to understand the coordination environment effect of single-atom metal sites on H2O2-mediated enzyme-like catalytic processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    脓毒症是由感染引起的氧化应激介导的具有高发病率和高死亡率的全身性炎症反应综合征。通过去除过量产生的活性氧和氮(RONS)进行早期抗氧化干预有利于预防和治疗脓毒症。然而,由于活性和可持续性不足,传统的抗氧化剂未能改善患者的预后.在这里,通过模拟天然铜超氧化物歧化酶(SOD5)的电子和结构特征,合成了具有配位不饱和和原子分散的Cu-N4位点的单原子纳米酶(SAzyme),用于有效的败血症治疗。从头设计的Cu-SAzyme表现出优异的SOD样活性,可有效消除O2•-,这是多个RON的来源,从而阻断脓毒症早期的自由基链反应和随后的炎症反应。此外,Cu-SAzyme可有效利用脓毒症动物模型中的全身性炎症和多器官损伤。这些发现表明开发的Cu-SAzyme具有作为治疗性纳米药物用于治疗败血症的巨大潜力。
    Sepsis is a systemic inflammatory response syndrome with high morbidity and mortality mediated by infection-caused oxidative stress. Early antioxidant intervention by removing excessively produced reactive oxygen and nitrogen species (RONS) is beneficial to the prevention and treatment of sepsis. However, traditional antioxidants have failed to improve patient outcomes due to insufficient activity and sustainability. Herein, by mimicking the electronic and structural characteristics of natural Cu-only superoxide dismutase (SOD5), a single-atom nanozyme (SAzyme) featuring coordinately unsaturated and atomically dispersed Cu-N4 site was synthesized for effective sepsis treatment. The de novo-designed Cu-SAzyme exhibits a superior SOD-like activity to efficiently eliminate O2 •-, which is the source of multiple RONS, thus blocking the free radical chain reaction and subsequent inflammatory response in the early stage of sepsis. Moreover, the Cu-SAzyme effectively harnessed systemic inflammation and multi-organ injuries in sepsis animal models. These findings indicate that the developed Cu-SAzyme possesses great potential as therapeutic nanomedicines for the treatment of sepsis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号