selective hydrogenation

选择性加氢
  • 文章类型: Journal Article
    虽然负载的金属纳米颗粒(NP)在多相催化中显示出显著的前景,精确控制他们与支持的互动,深刻影响它们的催化性能,仍然是一个重大挑战。在这项研究中,PtNP被掺入硫醚官能化的共价有机骨架(表示为COF-Sx),通过调节悬挂在COF孔壁上的硫醚密度,可以精确控制PtNP的大小和电子状态。值得注意的是,所得的Pt@COF-Sx在对氯硝基苯催化氢化为对氯苯胺中表现出优异的选择性(>99%),与嵌入不含硫醚的COF中的PtNP的选择性差形成鲜明对比。此外,随着硫醚密度的增加,在Pt@COF-Sx上的转化表现出火山型曲线,由于可访问的Pt位点的相应变化。这项工作提供了一种有效的方法来调节金属NP的催化通过其微环境调制,借助合理的设计和精确的支撑结构剪裁。
    While supported metal nanoparticles (NPs) have shown significant promise in heterogeneous catalysis, precise control over their interaction with the support, which profoundly impacts their catalytic performance, remains a significant challenge. In this study, Pt NPs are incorporated into thioether-functionalized covalent organic frameworks (denoted COF-Sx), enabling precise control over the size and electronic state of Pt NPs by adjusting the thioether density dangling on the COF pore walls. Notably, the resulting Pt@COF-Sx demonstrate exceptional selectivity (> 99 %) in catalytic hydrogenation of p-chloronitrobenzene to p-chloroaniline, in sharp contrast to the poor selectivity of Pt NPs embedded in thioether-free COFs. Furthermore, the conversion over Pt@COF-Sx exhibits a volcano-type curve as the thioether density increases, due to the corresponding change of accessible Pt sites. This work provides an effective approach to regulating the catalysis of metal NPs via their microenvironment modulation, with the aid of rational design and precise tailoring of support structure.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生物质平台分子糠醛(FAL)选择性加氢制糠醇(FA)对缓解能源危机具有重要意义。铜基催化剂是最常用的催化剂,通过改变制备方法可以优化其催化性能。本文强调了煅烧气氛对FAL选择性加氢的Cu/Al2O3催化剂性能的影响。用不同的煅烧气氛(N2和空气)处理了通过氨蒸发法制备的Cu/Al2O3催化剂的前体。根据原位XRD表征的综合结果,TEM,N2O滴定,H2-TPR和XPS,在N2气氛中煅烧的Cu/Al2O3催化剂更有利于Cu物种的分散和还原,还原过程可以产生更多的Cu和Cu0物种,这促进了FAL选择性氢化为FA。实验结果表明,N2煅烧气氛提高了FAL转化率和FA选择性,还原后FAL转化率进一步提高。Cu/Al2O3-N2-R表现出优异的性能,在120°C和1MPa的H2压力下2小时后,FA的产率高达99.9%。这项工作提供了一个简单的,提高Cu基催化剂C=O加氢性能的方法。
    The selective hydrogenation of the biomass platform molecule furfural (FAL) to produce furfuryl alcohol (FA) is of great significance to alleviate the energy crisis. Cu-based catalysts are the most commonly used catalysts, and their catalytic performance can be optimized by changing the preparation method. This paper emphasized the effect of calcination atmosphere on the performance of a Cu/Al2O3 catalyst for the selective hydrogenation of FAL. The precursor of the Cu/Al2O3 catalyst prepared by the ammonia evaporation method was treated with different calcination atmospheres (N2 and air). On the basis of the combined results from the characterizations using in situ XRD, TEM, N2O titration, H2-TPR and XPS, the Cu/Al2O3 catalyst calcined in the N2 atmosphere was more favorable for the dispersion and reduction of Cu species and the reduction process could produce more Cu+ and Cu0 species, which facilitated the selective hydrogenation of FAL to FA. The experimental results showed that the N2 calcination atmosphere improved the FAL conversion and FA selectivity, and the FAL conversion was further increased after reduction. Cu/Al2O3-N2-R exhibited the outstanding performance, with a high yield of 99.9% of FA after 2 h at 120 °C and an H2 pressure of 1 MPa. This work provides a simple, efficient and economic method to improve the C=O hydrogenation performance of Cu-based catalysts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    将废弃的聚对苯二甲酸乙二醇酯(PET)化学再循环到增值产品中可以减少CO2,微塑料和有毒化学物质的排放。在这项工作中,合成了介孔H型沸石SoconyMobil-5(HZSM-5)负载的Ru催化剂(Ru/m-HZSM-5),并在PET降解化学品(对苯二甲酸双(2-羟乙基),对苯二甲酸二甲酯,对苯二甲酸二乙酯,和对苯二甲酸)。表征揭示了Ru/m-HZSM-5催化剂具有中孔(5.32nm的主导通道),比表面积扩大(404m2·g-1),与Ru/HZSM-5相比,RuNP高度分散(40.6%)。而且,发现Ru/m-HZSM-5能够氢化这些大尺寸(1.09-1.82nm)的PET降解化学品中的苯环。特别是,在120℃下,BHET的转化率和BHCD对Ru/m-HZSM-5的选择性在2h内达到95.5%和95.6%。Ru/m-HZSM-5可以循环至少五次,活性和选择性没有明显损失。
    Chemical upcycling of waste polyethylene terephthalate (PET) to value-added products can reduce the emission of CO2, microplastics and toxic chemicals. In this work, mesoporous H-type Zeolite Socony Mobil-5 (HZSM-5) supported Ru catalyst (Ru/m-HZSM-5) was synthesized and tested in the hydrogenation of PET degraded chemicals (bis(2-hydroxyethyl) terephthalate, dimethyl terephthalate, diethyl terephthalate, and terephthalic acid). Characterizations disclosed that Ru/m-HZSM-5 catalyst possesses mesopores (a dominant channel of 5.32 nm), enlarged specific surface area (404 m2·g-1), and Ru NPs dispersed highly (40.6 %) compared to that of Ru/HZSM-5. And also, it was found that Ru/m-HZSM-5 was capable for the hydrogenation of benzene rings in these PET degraded chemicals with large sizes (1.09-1.82 nm). In particular, the conversion of BHET and the selectivity of BHCD over Ru/m-HZSM-5 reached 95.5 % and 95.6 % at 120 °C within 2 h. And Ru/m-HZSM-5 could be recycled at least five times without obvious loss of activity and selectivity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    准确解码表面活性位点的三维原子结构对于合理的催化剂设计至关重要,但仍具有挑战性。这里,我们使用对分布函数和反向蒙特卡罗模拟相结合的综合技术来揭示钯-铜纳米合金中Pd活性位点的表面分布和相邻配位环境。在原子排列的微调之后,Pd34Cu66纳米催化剂在乙炔完全转化时获得了98%的乙烯选择性,具有优异的催化性能,表现优于大多数报告的先进催化剂。定量破译表明,在Pd34Cu66纳米合金表面上分布着大量Pd-Pd配位数为3的活性位点,在高效半氢化中起着决定性的作用。这一发现不仅为从原子级洞察力指导双金属纳米催化剂的精确设计开辟了道路,而且提供了一种解析活性位点空间结构的方法。
    Accurately decoding the three-dimensional atomic structure of surface active sites is essential yet challenging for a rational catalyst design. Here, we used comprehensive techniques combining the pair distribution function and reverse Monte Carlo simulation to reveal the surficial distribution of Pd active sites and adjacent coordination environment in palladium-copper nanoalloys. After the fine-tuning of the atomic arrangement, excellent catalytic performance with 98% ethylene selectivity at complete acetylene conversion was obtained in the Pd34Cu66 nanocatalysts, outperforming most of the reported advanced catalysts. The quantitative deciphering shows a large number of active sites with a Pd-Pd coordination number of 3 distributed on the surface of Pd34Cu66 nanoalloys, which play a decisive role in highly efficient semihydrogenation. This finding not only opens the way for guiding the precise design of bimetal nanocatalysts from atomic-level insight but also provides a method to resolve the spatial structure of active sites.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    开发了一种由固定在纤维素上的钴纳米颗粒组成的新型复合催化剂。纤维素基质来自椰枣生物质废物,用高碘酸钠氧化生成二醛,并通过接枝邻氨基苯酚作为金属离子络合剂进一步衍生化。用FT-IR对新型复合催化剂进行了表征,固态NMR,XRD,SEM,TEM,ICP,和XPS。然后在温和的实验条件下在水性介质中在NaBH4存在下在室温下将4-硝基苯酚催化氢化为4-氨基苯酚中评估纳米催化剂的催化潜力。反应在7分钟的短时间内实现完全转化。速率常数计算为K=8.7×10-3s-1。将催化剂再循环八个循环。此外,我们探索了相同催化剂在不同反应条件下使用二氢氢化肉桂醛的应用。获得的结果非常有希望,在肉桂醇中具有高转化率和优异的选择性。
    A new hybrid catalyst consisting of cobalt nanoparticles immobilized onto cellulose was developed. The cellulosic matrix is derived from date palm biomass waste, which was oxidized by sodium periodate to yield dialdehyde and was further derivatized by grafting orthoaminophenol as a metal ion complexing agent. The new hybrid catalyst was characterized by FT-IR, solid-state NMR, XRD, SEM, TEM, ICP, and XPS. The catalytic potential of the nanocatalyst was then evaluated in the catalytic hydrogenation of 4-nitrophenol to 4-aminophenol under mild experimental conditions in aqueous medium in the presence of NaBH4 at room temperature. The reaction achieved complete conversion within a short period of 7 min. The rate constant was calculated to be K = 8.7 × 10-3 s-1. The catalyst was recycled for eight cycles. Furthermore, we explored the application of the same catalyst for the hydrogenation of cinnamaldehyde using dihydrogen under different reaction conditions. The results obtained were highly promising, exhibiting both high conversion and excellent selectivity in cinnamyl alcohol.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    开发绿色和具有成本效益的工业催化工艺的需求已导致人们对制备更坚固,高效,和大规模选择性非均相催化剂。在这方面,微波辅助合成是制造非均相催化剂(包括金属氧化物,沸石,金属有机框架,和负载的金属纳米颗粒)具有增强的催化性能,使合成放大。在这里,通过微波辅助水热法优化纳米尺寸的UiO-66-NH2的合成,以获得金属纳米颗粒稳定所必需的缺陷基质,促进加氢反应的催化活性位点(760kg·m-3·day-1时空产率,STY).然后,该协议在多峰微波反应器中放大,达到86%的收益率(约1g,1450kg·m-3·day-1STY)仅30分钟。之后,通过有效且快速的微波辅助水热法原位装饰纳米MOF形成Pd纳米颗粒,导致形成Pd@UiO-66-NH2复合材料。使用大角度环形暗场扫描透射电子显微镜(HAADF-STEM)和X射线光电子能谱(XPS)实现了MOF中Pd纳米颗粒(NPs)的局部化和氧化态,分别。最佳复合材料,加载1.7wt%Pd,表现出非凡的催化活性(>95%的产率,100%选择性)在温和条件下(1barH2,25°C,1h反应时间),不仅在各种单一烯烃(1-己烯,1-辛烯,1-十三烯,环己烯,和四苯基乙烯),但也在烯烃复杂混合物的转化中(即,1-己烯,1-十三烯,和茴香脑)。结果表明,活性相(PdNP)和催化多孔支架(UiO-66-NH2)之间存在强大的相互作用和协同作用,这对于选择性和可回收性至关重要。
    The need to develop green and cost-effective industrial catalytic processes has led to growing interest in preparing more robust, efficient, and selective heterogeneous catalysts at a large scale. In this regard, microwave-assisted synthesis is a fast method for fabricating heterogeneous catalysts (including metal oxides, zeolites, metal-organic frameworks, and supported metal nanoparticles) with enhanced catalytic properties, enabling synthesis scale-up. Herein, the synthesis of nanosized UiO-66-NH2 was optimized via a microwave-assisted hydrothermal method to obtain defective matrices essential for the stabilization of metal nanoparticles, promoting catalytically active sites for hydrogenation reactions (760 kg·m-3·day-1 space time yield, STY). Then, this protocol was scaled up in a multimodal microwave reactor, reaching 86% yield (ca. 1 g, 1450 kg·m-3·day-1 STY) in only 30 min. Afterward, Pd nanoparticles were formed in situ decorating the nanoMOF by an effective and fast microwave-assisted hydrothermal method, resulting in the formation of Pd@UiO-66-NH2 composites. Both the localization and oxidation states of Pd nanoparticles (NPs) in the MOF were achieved using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray photoelectron spectroscopy (XPS), respectively. The optimal composite, loaded with 1.7 wt % Pd, exhibited an extraordinary catalytic activity (>95% yield, 100% selectivity) under mild conditions (1 bar H2, 25 °C, 1 h reaction time), not only in the selective hydrogenation of a variety of single alkenes (1-hexene, 1-octene, 1-tridecene, cyclohexene, and tetraphenyl ethylene) but also in the conversion of a complex mixture of alkenes (i.e., 1-hexene, 1-tridecene, and anethole). The results showed a powerful interaction and synergy between the active phase (Pd NPs) and the catalytic porous scaffold (UiO-66-NH2), which are essential for the selectivity and recyclability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过沉淀凝胶法制备了具有不同组成,不同Cu和促进剂含量的Cu催化剂,并研究了合成气或生物质基丙二酸二乙酯(DEM)选择性加氢为有价值的1,3-丙二醇(1,3-PDO)。发现Ga促进的70Cu6Ga/SiO2催化剂表现出最高的催化性能,在160°C和8MPaH2的反应条件下实现100%的DEM转化率和76.6%的1,3-PDO选择性。70Cu6Ga/SiO2双金属催化剂在连续流动反应器中在180小时的工作时间内也表现出比单金属70Cu/SiO2催化剂明显更好的稳定性。表征结果表明,Ga的掺入增加了Cu和Ga物种之间的相互作用,阻碍了Cu2+物种的完全还原,并因此增加了催化剂表面上Cu的比例和路易斯酸性位点的数量。Cu0和Cu+之间的协同效应增强了酯羰基的吸附和活化及其随后的氢化,最终促成了CuGa/SiO2双金属催化剂的优异性能。
    Cu catalysts with different compositions and different Cu and promoter contents were prepared by precipitation-gel method and studied for the selective hydrogenation of syngas or biomass-based diethyl malonate (DEM) to valuable 1,3-propanediol (1,3-PDO). The Ga-promoted 70Cu6Ga/SiO2 catalyst was found to exhibit the highest catalytic performance, achieving 100 % DEM conversion and 76.6 % 1,3-PDO selectivity under reaction conditions of 160 °C and 8 MPa H2. The 70Cu6Ga/SiO2 bimetallic catalyst also presented obviously better stability than that of the monometallic 70Cu/SiO2 catalyst in a continuous flow reactor over 180 h time-on stream. Characterization results showed that the incorporation of Ga increased the interaction between Cu and Ga species, hindered the full reduction of Cu2+ species, and thus increased the proportion of Cu+ and the number of Lewis acidic sites on the catalyst surface. The synergistic effect between Cu0 and Cu+ enhanced the adsorption and activation of ester carbonyl groups and their subsequent hydrogenation, eventually contributed to the outstanding performances of the CuGa/SiO2 bimetallic catalysts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    单原子合金(SAAs)由于其活性位点的均匀分布和独特的主体-客体金属相互作用,在选择性氢化反应领域中越来越重要。在这里,构建了15个SAA,通过密度泛函理论(DFT)计算全面阐明了4-硝基苯乙烯(4-NS)选择性加氢中主体-客体金属相互作用与催化性能之间的关系。结果表明,具有强主体-客体金属相互作用的SAAs表现出对N─O键断裂的偏好,加氢过程的反应能垒主要受主体金属的影响。其中,Ir1NiSAA是主要的催化剂候选物,展示卓越的活性和选择性。此外,随后通过精确的合成技术制备Ir1NiSAA,并在4-NS到4-氨基苯乙烯(4-AS)的选择性氢化中进行评估。如预期,Ir1NiSAA表现出非凡的催化性能(产率>96%)。原位FT-IR实验和DFT计算进一步证实,Ir1NiSAA的Ir-Ni界面位点处的独特主体-客体金属相互作用赋予了其优异的4-NS选择性加氢能力。这项工作为通过调节主体-客体金属相互作用来增强SAAs催化剂在选择性加氢反应中的性能提供了有价值的见解。
    Single-atom alloys (SAAs) have gained increasing prominence in the field of selective hydrogenation reactions due to their uniform distribution of active sites and the unique host-guest metal interactions. Herein, 15 SAAs are constructed to comprehensively elucidate the relationship between host-guest metal interaction and catalytic performance in the selective hydrogenation of 4-nitrostyrene (4-NS) by density functional theory (DFT) calculations. The results demonstrate that the SAAs with strong host-guest metal interactions exhibit a preference for N─O bond cleavage, and the reaction energy barrier of the hydrogenation process is primarily influenced by the host metal. Among them, Ir1Ni SAA stands out as the prime catalyst candidate, showcasing exceptional activity and selectivity. Furthermore, the Ir1Ni SAA is subsequently prepared through precise synthesis techniques and evaluated in the selective hydrogenation of 4-NS to 4-aminostyrene (4-AS). As anticipated, the Ir1Ni SAA demonstrates extraordinary catalytic performance (yield > 96%). In situ FT-IR experiments and DFT calculations further confirmed that the unique host-guest metal interaction at the Ir-Ni interface site of Ir1Ni SAA endows it with excellent 4-NS selective hydrogenation ability. This work provides valuable insights into enhancing the performance of SAAs catalysts in selective hydrogenation reactions by modulating the host-guest metal interactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    不饱和醛中羰基的化学选择性加氢是化学工业中的一个重要过程,其中开发水相反应体系作为有机反应体系的替代品是具有挑战性的。在这里,我们报告了在各种温度下通过还原处理锚定在WO3-x纳米棒上的Ir原子簇催化剂(表示为Ir/WOx-T,T=200、300、400和500°C),加速水溶液中羰基的化学选择性氢化。最佳催化剂Ir/WOx-300在水介质中对肉桂醛(CAL)氢化为肉桂醇(COL)具有特殊的活性(TOF值:1313.7min-1)和化学选择性(收率:〜98.0%),也就是说,据我们所知,与以前报道的多相催化剂相比,液相反应中的含量最高。Ac-HAADF-STEM,XAFS,和XPS验证了金属-载体相互作用和Ir/WOx-300中最大的界面Ir浓度(Irδ-Ov-W5(0≤δ≤4);Ov表示氧空位)的形成。原位研究(拉曼,FT-IR),同位素标记测量与DFT计算相结合,证明C=O基团的氢化由两种途径组成:水介导的氢化(主要)和通过H2解离的直接氢化(次要)。在前一种情况下,W5+-Ov位点加速H2O的活化吸附,而Ir0位点促进H2和Irδ+的H-H键断裂促进CAL吸附。H2O分子,作为氢物种的来源,通过氢键网络直接参与羰基的氢化,相对于H2解离路径,能量势垒大大降低。这项工作证明了一条绿色催化路线,打破了活性-选择性权衡,向不饱和醛的选择性加氢,在多相催化方面显示出巨大的潜力。
    Chemoselective hydrogenation of carbonyl in unsaturated aldehydes is a significant process in the chemical industry, in which the development of aqueous-phase reaction systems as a substitution to organic ones is challenging. Herein, we report Ir atomic cluster catalysts anchored onto WO3-x nanorods via a reduction treatment at various temperatures (denoted as Ir/WOx-T, T = 200, 300, 400, and 500 °C), which accelerates the chemoselective hydrogenation of carbonyl groups in aqueous solutions. The optimal catalyst Ir/WOx-300 exhibits exceptional activity (TOF value: 1313.7 min-1) and chemoselectivity toward cinnamaldehyde (CAL) hydrogenation to cinnamyl alcohol (COL) (yield: ∼98.0%) in water medium, which is, to the best of our knowledge, the highest level compared with previously reported heterogeneous catalysts in liquid-phase reaction. Ac-HAADF-STEM, XAFS, and XPS verify the formation of interface structure (Irδ+-Ov-W5+ (0 ≤ δ ≤ 4); Ov denotes oxygen vacancy) induced by metal-support interaction and the largest concentration of interfacial Ir (Irδ+) in Ir/WOx-300. In situ studies (Raman, FT-IR), isotopic labeling measurements combined with DFT calculations substantiate that the hydrogenation of the C=O group consists of two pathways: water-mediated hydrogenation (predominant) and direct hydrogenation via H2 dissociation (secondary). In the former case, W5+-Ov site accelerates the activation adsorption of H2O, while Ir0 site facilitates the H-H bond cleavage of H2 and Irδ+ promotes the CAL adsorption. H2O molecule, as the source of hydrogen species, participates directly in the hydrogenation of the carbonyl group through a hydrogen-bonded network, with a largely reduced energy barrier relative to the H2 dissociation path. This work demonstrates a green catalytic route that breaks the activity-selectivity trade-off toward the selective hydrogenation of unsaturated aldehydes, which shows great potential in heterogeneous catalysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    了解金属位点和酸位点之间的协同作用对于提高双功能催化剂在许多非均相反应中的效率具有重要意义。特别是在生物质升级方面。在这里,我们报告了一种“受限自动氧化还原”策略,将CeO2锚定的Pt原子固定在ZSM-5笼的内壁上,实现精细控制两个活性位点的位置的目标。与传统的表面支撑对应物相比,封装的Pt/CeO2@ZSM-5催化剂具有显著提高的活性和选择性,它可以在160℃下在6小时内将>99%糠醛转化为环戊酮,选择性为97.2%。除了优异的催化性能,有序的金属酸分布也使这类催化剂成为金属酸相互作用的理想研究课题。以下机械化调查表明,增强与独特的封装结构密切相关,这促进了反应物在不同活性位点的迁移,从而有助于串联反应。本文受版权保护。保留所有权利。
    Understanding the synergism between the metal site and acid site is of great significance in boosting the efficiency of bi-functional catalysts in many heterogeneous reactions, particularly in biomass upgrading. Herein, a \"confined auto-redox\" strategy is reported to fix CeO2-anchored Pt atoms on the inner wall of a ZSM-5 cage, achieving the target of finely controlling the placements of the two active sites. Compared with the conventional surface-supported counterpart, the encapsulated Pt/CeO2@ZSM-5 catalyst possesses remarkably-improved activity and selectivity, which can convert >99% furfural into cyclopentanone with 97.2% selectivity in 6 h at 160 °C. Besides the excellent catalytic performance, the ordered metal-acid distribution also makes such kind of catalyst an ideal research subject for metal-acid interactions. The following mechanization investigation reveals that the enhancement is strongly related to the unique encapsulation structure, which promotes the migration of the reactants over different active sites, thereby contributing to the tandem reaction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号