seizure prediction

癫痫发作预测
  • 文章类型: Journal Article
    癫痫发作预测对于提高癫痫患者的生活质量至关重要。在这项研究中,我们介绍了一种新颖的混合深度学习架构,将DenseNet和VisionTransformer(ViT)与注意力融合层合并,用于癫痫发作预测。DenseNet捕获分层功能并确保有效的参数使用,而ViT提供自我注意机制和全局特征表示。注意力融合层有效地融合了两个网络的特征,保证最相关的信息被用于癫痫发作预测。使用短时傅里叶变换(STFT)对原始EEG信号进行预处理以实现时频分析并将EEG信号转换为时频矩阵。然后,将它们输入拟议的混合DenseNet-ViT网络模型,以实现端到端癫痫发作预测。CHB-MIT数据集,包括24名患者的数据,用于评估,并利用留一交叉验证方法来评估所提出模型的性能。我们的结果表明,在癫痫发作预测方面表现优异,表现出高精度和低冗余,这表明结合DenseNet,ViT,注意机制可以显着增强预测能力,并促进更精确的治疗干预。
    Epilepsy seizure prediction is vital for enhancing the quality of life for individuals with epilepsy. In this study, we introduce a novel hybrid deep learning architecture, merging DenseNet and Vision Transformer (ViT) with an attention fusion layer for seizure prediction. DenseNet captures hierarchical features and ensures efficient parameter usage, while ViT offers self-attention mechanisms and global feature representation. The attention fusion layer effectively amalgamates features from both networks, guaranteeing the most relevant information is harnessed for seizure prediction. The raw EEG signals were preprocessed using the short-time Fourier transform (STFT) to implement time-frequency analysis and convert EEG signals into time-frequency matrices. Then, they were fed into the proposed hybrid DenseNet-ViT network model to achieve end-to-end seizure prediction. The CHB-MIT dataset, including data from 24 patients, was used for evaluation and the leave-one-out cross-validation method was utilized to evaluate the performance of the proposed model. Our results demonstrate superior performance in seizure prediction, exhibiting high accuracy and low redundancy, which suggests that combining DenseNet, ViT, and the attention mechanism can significantly enhance prediction capabilities and facilitate more precise therapeutic interventions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管通过机器学习进行癫痫预测的算法广泛,大多数模型都是为离线场景量身定制的,无法处理数据随时间变化的实际场景。当EEG在临床环境中动态变化时,就会发生学习的脑电图(EEG)数据的灾难性遗忘(CF)。本文采用持续学习(CL)策略记忆投影(MP)进行癫痫预测,这可以与其他算法相结合,以避免CF。这样的策略使得模型能够在动态子空间中逐层学习来自每个患者的EEG数据,以最小化干扰并促进知识转移。将正则化损失重建算法和矩阵降维算法引入到MP的核心中。实验结果表明,MP在癫痫发作预测的顺序学习中表现出优异的性能和较低的遗忘率。多次实验的准确度和灵敏度的遗忘率均在5%以下。从多中心数据集学习时,准确度和灵敏度的遗忘率下降到0.65%和1.86%,使其与最先进的CL策略相媲美。通过消融实验,我们已经分析了MP可以以最小的存储和计算成本运行,这证明了临床情景中癫痫发作预测的实际潜力。
    Despite extensive algorithms for epilepsy prediction via machine learning, most models are tailored for offline scenarios and cannot handle actual scenarios where data changes over time. Catastrophic forgetting(CF) for learned electroencephalogram(EEG) data occurs when EEG changes dynamically in the clinical setting. This paper implements a continual learning(CL) strategy Memory Projection(MP) for epilepsy prediction, which can be combined with other algorithms to avoid CF. Such a strategy enables the model to learn EEG data from each patient in dynamic subspaces with weak correlation layer by layer to minimize interference and promote knowledge transfer. Regularization Loss Reconstruction Algorithm and Matrix Dimensionality Reduction Algorithm are introduced into the core of MP. Experimental results show that MP exhibits excellent performance and low forgetting rates in sequential learning of seizure prediction. The forgetting rate of accuracy and sensitivity under multiple experiments are below 5%. When learning from multi-center datasets, the forgetting rates for accuracy and sensitivity decrease to 0.65% and 1.86%, making it comparable to state-of-the-art CL strategies. Through ablation experiments, we have analyzed that MP can operate with minimal storage and computational cost, which demonstrates practical potential for seizure prediction in clinical scenarios.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:癫痫发作的自动预测是癫痫领域的主要目标。然而,不同患者脑电图(EEG)信号的高度变异性限制了预测模型在临床应用中的使用。
    方法:本文提出了一种独立于患者的癫痫发作预测模型,名为MFCC-CNN,提高泛化能力。MFCC-CNN模型引入了集中在低频区域的Mel频率倒谱系数(MFCC)特征和线性预测倒谱系数(LPCC)特征,其中包含更多详细信息。利用卷积神经网络(CNN)构建癫痫发作预测模型。
    结果:实验结果表明,所提出的模型获得了96%的准确性,灵敏度92%,在CNHB-MIT数据集中,24例病例的特异性为84%,F1评分为85%。MFCC-CNN模型的整体性能优于其他模型。
    结论:MFCC-CNN模型不需要针对不同患者进行特别定制。作为一种独立于患者的癫痫发作预测模型,具有良好的泛化能力。
    BACKGROUND: Automatic prediction of seizures is a major goal in the field of epilepsy. However, the high variability of Electroencephalogram (EEG) signals in different patients limits the use of prediction models in clinical applications.
    METHODS: This paper proposes a patient-independent seizure prediction model, named MFCC-CNN, to improve the generalization ability. MFCC-CNN model introduces Mel-Frequency Cepstrum Coefficients (MFCC) features and Linear Predictive Cepstral Coefficients (LPCC) features concentrated in the low frequency region, which contains more detailed information. Convolutional neural network (CNN) is used to construct a seizure prediction model.
    RESULTS: Experimental results showed that the proposed model obtained accuracy of 96 % , sensitivity of 92 % , specificity of 84 % and F1-score of 85 % for 24 cases in CNHB-MIT dataset. The overall performance of MFCC-CNN model is better than the other models.
    CONCLUSIONS: MFCC-CNN model does not need to be specifically customized for different patients. As a patient-independent seizure prediction model, it has good generalization ability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    癫痫影响全球1%的人口,大约三分之一的患者对抗癫痫药物(ASM)有抗药性,造成身体伤害和心理问题的风险。癫痫发作预测算法旨在通过提供及时警报来提高这些个体的生活质量。本研究提出了一种应用于不同数据库的患者特异性癫痫发作预测算法(EPILEPSIAE,CHB-MIT,AES,和癫痫生态系统)。所提出的算法经历了一个标准化的框架,包括数据预处理,特征提取,培训,测试,和后处理。各种数据库需要在算法中进行调整,考虑数据可用性和特征的差异。该算法在数据库中表现出可变的性能,考虑到敏感性,FPR/h,特异性,和AUC评分。这项研究区分了基于样本的方法,通常通过忽略癫痫发作的时间方面来产生更好的结果,和基于警报的方法,旨在模拟现实生活条件,但产生不太有利的结果。统计评估揭示了超越机会水平的挑战,强调癫痫事件的罕见性。与现有研究的比较分析强调了标准化评估的复杂性,鉴于不同的方法和数据集的变化。旨在模拟现实生活条件的严谨方法产生不太有利的结果,强调现实假设和全面假设的重要性,长期的,和系统结构化的数据集,供未来研究使用。
    Epilepsy affects 1% of the global population, with approximately one-third of patients resistant to anti-seizure medications (ASMs), posing risks of physical injuries and psychological issues. Seizure prediction algorithms aim to enhance the quality of life for these individuals by providing timely alerts. This study presents a patient-specific seizure prediction algorithm applied to diverse databases (EPILEPSIAE, CHB-MIT, AES, and Epilepsy Ecosystem). The proposed algorithm undergoes a standardized framework, including data preprocessing, feature extraction, training, testing, and postprocessing. Various databases necessitate adaptations in the algorithm, considering differences in data availability and characteristics. The algorithm exhibited variable performance across databases, taking into account sensitivity, FPR/h, specificity, and AUC score. This study distinguishes between sample-based approaches, which often yield better results by disregarding the temporal aspect of seizures, and alarm-based approaches, which aim to simulate real-life conditions but produce less favorable outcomes. Statistical assessment reveals challenges in surpassing chance levels, emphasizing the rarity of seizure events. Comparative analyses with existing studies highlight the complexity of standardized assessments, given diverse methodologies and dataset variations. Rigorous methodologies aiming to simulate real-life conditions produce less favorable outcomes, emphasizing the importance of realistic assumptions and comprehensive, long-term, and systematically structured datasets for future research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    癫痫有许多特定的机制。对导致癫痫发作的神经动力学的理解对于揭示病理机制和开发治疗方法很重要。我们研究了导致Dravet综合征(DS)患者和小鼠模型惊厥性癫痫发作的电图活动和神经动力学,发育性和癫痫性脑病,其中GABA能神经元的兴奋性低下被认为是主要功能障碍。我们分析了携带SCN1A致病变异的DS患者的脑电图,以及硬膜外脑电图,海马局部场电位,Scn1a+/-和Scn1aRH/+DS小鼠海马单单位神经元活动。引人注目的是,大多数癫痫发作在患者和小鼠中都是低电压快速发作的,这被认为是由GABA能中间神经元的过度活跃产生的,与DS的主要病理机制相反。分析单单元记录,我们观察到,在癫痫发作(发作前)之前,假定的中间神经元放电的时间混乱先于癫痫发作时的活动增加,以及整个神经元网络。此外,我们在Scn1a小鼠和患者脑电图的海马和皮质场电位的频谱特征中发现了发作前期的早期特征,这与我们在单个神经元中观察到的功能障碍一致,并允许癫痫发作预测。因此,中间神经元的扰动的发作前活动导致它们在全身性癫痫发作时的过度活跃,具有与其他癫痫中观察到的类似的低电压快速特征,并且由GABA能神经元的过度活跃触发。发作前光谱特征可用作预测性癫痫发作生物标志物。
    Epilepsies have numerous specific mechanisms. The understanding of neural dynamics leading to seizures is important for disclosing pathological mechanisms and developing therapeutic approaches. We investigated electrographic activities and neural dynamics leading to convulsive seizures in patients and mouse models of Dravet syndrome (DS), a developmental and epileptic encephalopathy in which hypoexcitability of GABAergic neurons is considered to be the main dysfunction. We analyzed EEGs from DS patients carrying a SCN1A pathogenic variant, as well as epidural electrocorticograms, hippocampal local field potentials, and hippocampal single-unit neuronal activities in Scn1a+/- and Scn1aRH/+ DS mice. Strikingly, most seizures had low-voltage-fast onset in both patients and mice, which is thought to be generated by hyperactivity of GABAergic interneurons, the opposite of the main pathological mechanism of DS. Analyzing single-unit recordings, we observed that temporal disorganization of the firing of putative interneurons in the period immediately before the seizure (preictal) precedes the increase of their activity at seizure onset, together with the entire neuronal network. Moreover, we found early signatures of the preictal period in the spectral features of hippocampal and cortical field potential of Scn1a mice and of patients\' EEG, which are consistent with the dysfunctions that we observed in single neurons and that allowed seizure prediction. Therefore, the perturbed preictal activity of interneurons leads to their hyperactivity at the onset of generalized seizures, which have low-voltage-fast features that are similar to those observed in other epilepsies and are triggered by hyperactivity of GABAergic neurons. Preictal spectral features may be used as predictive seizure biomarkers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脑电图(EEG)在癫痫分析中起着至关重要的作用,预测癫痫发作对癫痫的临床治疗具有重要价值。目前,使用卷积神经网络(CNN)的预测方法主要关注脑电的局部特征,这使得从多通道EEG中同时捕获空间和时间特征以有效地识别发作前状态具有挑战性。为了提取多通道脑电图之间固有的空间关系,同时获得它们的时间相关性,本研究通过结合图注意网络(GAT)和时间卷积网络(TCN),提出了一种预测癫痫发作的端到端模型.将低通滤波的脑电信号送入GAT模块进行脑电空间特征提取,然后是TCN来捕获时间特征,允许端到端模型获取多通道脑电图的时空相关性。该系统在公开可用的CHB-MIT数据库上进行了评估,基于分段的屈服精度为98.71%,特异性98.35%,灵敏度为99.07%,F1得分为98.71%,分别。基于事件的敏感度为97.03%,假阳性率(FPR)为0.03/h。实验结果表明,该系统可以通过利用脑电时空特征的融合来实现癫痫发作预测的卓越性能,而无需特征工程。
    Electroencephalography (EEG) plays a crucial role in epilepsy analysis, and epileptic seizure prediction has significant value for clinical treatment of epilepsy. Currently, prediction methods using Convolutional Neural Network (CNN) primarily focus on local features of EEG, making it challenging to simultaneously capture the spatial and temporal features from multi-channel EEGs to identify the preictal state effectively. In order to extract inherent spatial relationships among multi-channel EEGs while obtaining their temporal correlations, this study proposed an end-to-end model for the prediction of epileptic seizures by incorporating Graph Attention Network (GAT) and Temporal Convolutional Network (TCN). Low-pass filtered EEG signals were fed into the GAT module for EEG spatial feature extraction, and followed by TCN to capture temporal features, allowing the end-to-end model to acquire the spatiotemporal correlations of multi-channel EEGs. The system was evaluated on the publicly available CHB-MIT database, yielding segment-based accuracy of 98.71%, specificity of 98.35%, sensitivity of 99.07%, and F1-score of 98.71%, respectively. Event-based sensitivity of 97.03% and False Positive Rate (FPR) of 0.03/h was also achieved. Experimental results demonstrated this system can achieve superior performance for seizure prediction by leveraging the fusion of EEG spatiotemporal features without the need of feature engineering.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    癫痫是一种常见的中枢神经系统慢性疾病。利用头皮脑电图(EEG)信号及时准确地预测癫痫发作,可以使患者在癫痫发作发生前采取合理的预防措施,从而减少对患者的伤害。近年来,基于深度学习的方法在解决癫痫发作预测问题方面取得了重大进展。然而,目前大多数方法主要集中在对脑电图的短期或长期依赖性建模,而忽略了两者的考虑。在这项研究中,我们提出了一个并行双分支融合网络(PDBFusNet),旨在结合卷积神经网络(CNN)和变压器的互补优势。具体来说,首先使用Mel频率倒谱系数(MFCC)提取EEG信号的特征。然后,提取的特征被传递到并行双分支,以同时捕获脑电信号的短期和长期依赖性。Further,关于变压器分支,开发了一种新颖的特征融合模块,以增强利用时间的能力,频率,和频道信息。为了评估我们的提议,我们在公共癫痫脑电图数据集CHB-MIT上进行了充分的实验,在那里的准确性,灵敏度,特异性和精密度为95.76%,95.81%,95.71%和95.71%,分别。与最先进的竞争对手相比,PDBFusNet表现出卓越的性能,这证实了我们建议的有效性.
    Epilepsy is a prevalent chronic disorder of the central nervous system. The timely and accurate seizure prediction using the scalp Electroencephalography (EEG) signal can make patients adopt reasonable preventive measures before seizures occur and thus reduce harm to patients. In recent years, deep learning-based methods have made significant progress in solving the problem of epileptic seizure prediction. However, most current methods mainly focus on modeling short- or long-term dependence in EEG, while neglecting to consider both. In this study, we propose a Parallel Dual-Branch Fusion Network (PDBFusNet) which aims to combine the complementary advantages of Convolutional Neural Network (CNN) and Transformer. Specifically, the features of the EEG signal are first extracted using Mel Frequency Cepstral Coefficients (MFCC). Then, the extracted features are delivered into the parallel dual-branches to simultaneously capture the short- and long-term dependencies of EEG signal. Further, regarding the Transformer branch, a novel feature fusion module is developed to enhance the ability of utilizing time, frequency, and channel information. To evaluate our proposal, we perform sufficient experiments on the public epileptic EEG dataset CHB-MIT, where the accuracy, sensitivity, specificity and precision are 95.76%, 95.81%, 95.71% and 95.71%, respectively. PDBFusNet shows superior performance compared to state-of-the-art competitors, which confirms the effectiveness of our proposal.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    最近的科学文献大量提出了利用机器学习自动分析脑电图(EEG)信号的癫痫发作预测方法。深度学习算法似乎取得了特别出色的性能,这表明癫痫发作预测的临床设备的实施可能是触手可及的。然而,大多数研究通过随机交叉验证技术评估了自动预测方法的鲁棒性,而临床应用需要基于独立于患者的测试进行更严格的验证。在这项研究中,我们表明可以进行自动癫痫发作预测,在某种程度上,即使是在训练阶段从未见过的独立患者,由于实施了一个简单的校准管道,可以微调深度学习模型,即使是在新患者记录的单个癫痫事件中。我们使用两个数据集评估我们的校准程序,这些数据集包含从大量癫痫患者队列中记录的EEG信号。证明深度学习方法的预测精度平均可以提高20%以上,所有独立患者的表现都有系统的改善。我们进一步表明,我们的校准过程最适合深度学习模型,但也可以成功地应用于基于工程信号特征的机器学习算法。虽然我们的方法仍然需要每个患者至少一个癫痫事件来校准预测模型,我们得出的结论是,专注于现实的验证方法可以更可靠地比较不同的机器学习方法来预测癫痫发作,实现可用于日常医疗保健实践的强大而有效的预测系统。
    The recent scientific literature abounds in proposals of seizure forecasting methods that exploit machine learning to automatically analyze electroencephalogram (EEG) signals. Deep learning algorithms seem to achieve a particularly remarkable performance, suggesting that the implementation of clinical devices for seizure prediction might be within reach. However, most of the research evaluated the robustness of automatic forecasting methods through randomized cross-validation techniques, while clinical applications require much more stringent validation based on patient-independent testing. In this study, we show that automatic seizure forecasting can be performed, to some extent, even on independent patients who have never been seen during the training phase, thanks to the implementation of a simple calibration pipeline that can fine-tune deep learning models, even on a single epileptic event recorded from a new patient. We evaluate our calibration procedure using two datasets containing EEG signals recorded from a large cohort of epileptic subjects, demonstrating that the forecast accuracy of deep learning methods can increase on average by more than 20%, and that performance improves systematically in all independent patients. We further show that our calibration procedure works best for deep learning models, but can also be successfully applied to machine learning algorithms based on engineered signal features. Although our method still requires at least one epileptic event per patient to calibrate the forecasting model, we conclude that focusing on realistic validation methods allows to more reliably compare different machine learning approaches for seizure prediction, enabling the implementation of robust and effective forecasting systems that can be used in daily healthcare practice.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    癫痫影响全球超过5000万人,使其成为世界上最流行的神经疾病之一。癫痫的主要症状是癫痫发作,突然发生并可能导致严重伤害或死亡。预测癫痫发作发生的能力可以减轻许多风险,并给癫痫患者带来压力。我们参考正常的EEG作为来袭癫痫发作的前兆,提出了检测发作前(或发作前)的问题。为此,我们开发了几种有监督的深度学习方法模型来从正常脑电图中识别发作前脑电图。我们进一步开发新的无监督深度学习方法,仅在正常脑电图上训练模型,并将癫痫发作前脑电图检测为异常事件。这些深度学习模型以特定于人的方式在两个大型EEG癫痫发作数据集上进行了训练和评估。我们发现有监督和无监督方法都是可行的;然而,他们的表现因患者而异,方法和架构。这项新的研究具有开发治疗干预措施和拯救人类生命的潜力。
    Epilepsy affects more than 50 million people worldwide, making it one of the world\'s most prevalent neurological diseases. The main symptom of epilepsy is seizures, which occur abruptly and can cause serious injury or death. The ability to predict the occurrence of an epileptic seizure could alleviate many risks and stresses people with epilepsy face. We formulate the problem of detecting preictal (or pre-seizure) with reference to normal EEG as a precursor to incoming seizure. To this end, we developed several supervised deep learning approaches model to identify preictal EEG from normal EEG. We further develop novel unsupervised deep learning approaches to train the models on only normal EEG, and detecting pre-seizure EEG as an anomalous event. These deep learning models were trained and evaluated on two large EEG seizure datasets in a person-specific manner. We found that both supervised and unsupervised approaches are feasible; however, their performance varies depending on the patient, approach and architecture. This new line of research has the potential to develop therapeutic interventions and save human lives.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    癫痫发作的特点是突发性和不可预知性,对患者的日常生活构成重大风险。准确可靠的癫痫发作预测系统可以在癫痫发作发生之前提供警报,以及给予患者和护理人员足够的时间采取适当的措施。本研究提出了一种基于深度学习并结合手工制作特征的有效癫痫发作预测方法。通过最大相关性和最小冗余(mRMR)选择手工制作的特征以获得最佳特征集。为了从融合的多维结构中提取癫痫特征,我们设计了一个P3D-BiConvLstm3D模型,它是伪3D卷积神经网络(P3DCNN)和双向卷积长短期记忆3D(BiConvLstm3D)的组合。我们还将EEG信号转换为融合空间的多维结构,手动功能,和时间信息。然后将多维结构馈送到P3DCNN中,以提取空间和手动特征以及特征到特征的依赖关系,然后是BiConvLstm3D输入,以探索时间依赖关系,同时保留空间特征,最后,实现通道注意机制以强调多通道输出中更具代表性的信息。建议的平均精度为98.13%,平均灵敏度为98.03%,CHB-MIT头皮脑电图数据库的平均精度为98.30%,平均特异性为98.23%。通过将所提出的模型与其他基线方法进行比较,以确认通过时空非线性特征融合的特征性能更好。结果表明,提出的P3DCNN-BiConvLstm3D-Attition3D方法通过时空非线性特征融合进行癫痫预测是有效的。
    Epileptic seizures are characterized by their sudden and unpredictable nature, posing significant risks to a patient\'s daily life. Accurate and reliable seizure prediction systems can provide alerts before a seizure occurs, as well as give the patient and caregivers provider enough time to take appropriate measure. This study presents an effective seizure prediction method based on deep learning that combine with handcrafted features. The handcrafted features were selected by Max-Relevance and Min-Redundancy (mRMR) to obtain the optimal set of features. To extract the epileptic features from the fused multidimensional structure, we designed a P3D-BiConvLstm3D model, which is a combination of pseudo-3D convolutional neural network (P3DCNN) and bidirectional convolutional long short-term memory 3D (BiConvLstm3D). We also converted EEG signals into a multidimensional structure that fused spatial, manual features, and temporal information. The multidimensional structure is then fed into a P3DCNN to extract spatial and manual features and feature-to-feature dependencies, followed by a BiConvLstm3D input to explore temporal dependencies while preserving the spatial features, and finally, a channel attention mechanism is implemented to emphasize the more representative information in the multichannel output. The proposed has an average accuracy of 98.13%, an average sensitivity of 98.03%, an average precision of 98.30% and an average specificity of 98.23% for the CHB-MIT scalp EEG database. A comparison of the proposed model with other baseline methods was done to confirm the better performance of features through time-space nonlinear feature fusion. The results show that the proposed P3DCNN-BiConvLstm3D-Attention3D method for epilepsy prediction by time-space nonlinear feature fusion is effective.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号