scanning transmission electron microscopy

扫描透射电子显微镜
  • 文章类型: Journal Article
    原子分辨率扫描透射电子显微镜(STEM)表征需要将样品精确倾斜到高对称区域轴,通常通过遵循衍射图案在倒数空间中进行处理。然而,对于小尺寸的纳米晶材料,它们的衍射图案通常太微弱,无法指导倾斜过程。这里,根据Ronchigram中阴影图像的衍射对比度变化,提出了一种简单有效的倾斜方法。可以基于具有最低强度的阴影图像的位置来计算样品的取向错位角并使其相对于区域轴倾斜。该方法不需要样品的先验知识,并且可以校正的最大取向错角>±6.9°,具有亚mrad精度。它在真实的空间中运行,没有记录样品的衍射图案,使其对纳米晶材料特别有效。结合脚本来控制显微镜,在低剂量条件下(<0.17e-2s-1),样品可以自动倾斜到区域轴,促进光束敏感材料如沸石或金属有机骨架的成像。这种自动倾斜方法可以通过STEM成像对纳米晶体材料的原子级表征做出显著贡献。
    Atomic-resolution scanning transmission electron microscopy (STEM) characterization requires precise tilting of the specimen to a high symmetric zone axis, which is usually processed in reciprocal space by following the diffraction patterns. However, for small-sized nanocrystalline materials, their diffraction patterns are often too faint to guide the tilting process. Here, a simple and effective tilting method is developed based on the diffraction contrast change of the shadow image in the Ronchigram. The misorientation angle of the specimen can be calculated and tilted to the zone axis based on the position of the shadow image with lowest intensity. This method requires no prior knowledge of the sample and the maximum misorientation angle that can be corrected is >±6.9° with sub-mrad accuracy. It operates in real space, without recording the diffraction patterns of the specimens, making it particularly effective for nanocrystalline materials. Combined with the scripting to control the microscope, the sample can be automatically tilted to the zone axis under low dose conditions (<0.17 e- Å- 2 s-1), facilitating the imaging of beam sensitive materials such as zeolites or metal-organic frameworks. This automated tilting method can significantly contribute to the atomic-scale characterization of the nanocrystalline materials by STEM imaging.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    液相扫描透射电子显微镜(LP-STEM)的最新进展使纳米分辨率的动态生物过程的研究成为可能,为使用电子显微镜进行活细胞成像铺平了道路。然而,这种技术通常受到整个细胞样品的固有厚度和电子束辐照的损害的阻碍。这些限制降低了图像质量和分辨率,阻碍生物学解释。采用石墨烯封装,扫描透射电子显微镜(STEM),和能量色散X射线(EDX)光谱,以减轻这些问题提供了前所未有的水平的细胞内细节的水标本。这项研究证明了LP-STEM在厚生物样品中检查和鉴定内部细胞结构的潜力。具体来说,它强调了使用LP-STEM来研究抗辐射性,革兰氏阳性菌,使用各种成像技术的耐辐射球菌。
    Recent advances in liquid phase scanning transmission electron microscopy (LP-STEM) have enabled the study of dynamic biological processes at nanometer resolutions, paving the way for live-cell imaging using electron microscopy. However, this technique is often hampered by the inherent thickness of whole cell samples and damage from electron beam irradiation. These restrictions degrade image quality and resolution, impeding biological interpretation. Using graphene encapsulation, scanning transmission electron microscopy (STEM), and energy-dispersive X-ray (EDX) spectroscopy to mitigate these issues provides unprecedented levels of intracellular detail in aqueous specimens. This study demonstrates the potential of LP-STEM to examine and identify internal cellular structures in thick biological samples. Specifically, it highlights the use of LP-STEM to investigate the radiation resistant, gram-positive bacterium, Deinococcus radiodurans using various imaging techniques.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    尽管扫描透射电子显微镜(STEM)广泛用于在原子尺度上观察材料的结构,对一些相关电子束损伤机制的详细了解是有限的。最近的报告表明,某些类型的损害可以建模为扩散过程,并且必须将该过程的积累效应保持在较低水平,以减少损害。因此,我们开发了STEM中时空扩散过程的明确数学公式,该公式同时考虑了仪器和样品参数。此外,我们的框架可以使用STEM中最佳选择的探针位置来帮助设计扩散控制采样(DCS)策略,这限制了累积扩散分布。数值模拟突出了不同实验STEM配置的累积扩散分布的可变性。这些分析和数值框架随后可用于仔细设计2维和4维STEM实验,其中将光束损伤降至最低。
    Despite the widespread use of Scanning Transmission Electron Microscopy (STEM) for observing the structure of materials at the atomic scale, a detailed understanding of some relevant electron beam damage mechanisms is limited. Recent reports suggest that certain types of damage can be modelled as a diffusion process and that the accumulation effects of this process must be kept low in order to reduce damage. We therefore develop an explicit mathematical formulation of spatiotemporal diffusion processes in STEM that take into account both instrument and sample parameters. Furthermore, our framework can aid the design of Diffusion Controlled Sampling (DCS) strategies using optimally selected probe positions in STEM, that constrain the cumulative diffusion distribution. Numerical simulations highlight the variability of the cumulative diffusion distribution for different experimental STEM configurations. These analytical and numerical frameworks can subsequently be used for careful design of 2- and 4-dimensional STEM experiments where beam damage is minimised.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    铁电畴壁是新兴电子性质和异常极性顺序的丰富来源。最近的研究表明,铁电壁的结构可以远远超出常规的伊辛型结构。Néel-,Bloch-,并观察到类似涡旋的极地模式,与磁畴壁的自旋纹理表现出强烈的相似性。这里,据报道,在单轴铁电Pb5Ge3O11中发现了反铁电畴壁。解决了具有Pb原子交替位移的高度移动的畴壁,导致壁内偶极子方向的循环翻转180°。密度泛函理论计算表明,Pb5Ge3O11是超铁电材料,允许系统克服通常抑制偶极子沿纵向反平行排序的去极化场。有趣的是,在电子束下观察到的反铁电壁比基本的头对头或尾对尾壁在能量上更昂贵。结果表明了一种新型的激发畴-壁态,将以前对铁电畴壁的研究扩展到反铁性现象的领域。
    Ferroelectric domain walls are a rich source of emergent electronic properties and unusual polar order. Recent studies show that the configuration of ferroelectric walls can go well beyond the conventional Ising-type structure. Néel-, Bloch-, and vortex-like polar patterns have been observed, displaying strong similarities with the spin textures at magnetic domain walls. Here, the discovery of antiferroelectric domain walls in the uniaxial ferroelectric Pb5Ge3O11 is reported. Highly mobile domain walls with an alternating displacement of Pb atoms are resolved, resulting in a cyclic 180° flip of dipole direction within the wall. Density functional theory calculations show that Pb5Ge3O11 is hyperferroelectric, allowing the system to overcome the depolarization fields that usually suppress the antiparallel ordering of dipoles along the longitudinal direction. Interestingly, the antiferroelectric walls observed under the electron beam are energetically more costly than basic head-to-head or tail-to-tail walls. The results suggest a new type of excited domain-wall state, expanding previous studies on ferroelectric domain walls into the realm of antiferroic phenomena.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    缺陷工程广泛用于赋予材料所需的功能。尽管原子分辨率扫描透射电子显微镜(STEM)的广泛应用,传统的缺陷分析方法对随机噪声和人为偏差高度敏感。虽然深度学习(DL)提出了一种可行的替代方案,它需要大量的带有标记的地面实况的训练数据。在这里,采用周期生成对抗网络(CycleGAN)和U网,我们提出了一种基于单个实验STEM图像的方法,以解决高注释成本和图像噪声的缺陷检测。不仅可以看到原子缺陷,而且可以看到单层MoS2中的氧掺杂剂。该方法可以很容易地扩展到其他二维系统,因为训练是基于单元格级别的图像。因此,我们的结果概述了用最少数据集训练模型的新方法,为充分利用材料科学界DL的力量提供了巨大的机会。
    Defect engineering is widely used to impart the desired functionalities on materials. Despite the widespread application of atomic-resolution scanning transmission electron microscopy (STEM), traditional methods for defect analysis are highly sensitive to random noise and human bias. While deep learning (DL) presents a viable alternative, it requires extensive amounts of training data with labeled ground truth. Herein, employing cycle generative adversarial networks (CycleGAN) and U-Nets, we propose a method based on a single experimental STEM image to tackle high annotation costs and image noise for defect detection. Not only atomic defects but also oxygen dopants in monolayer MoS2 are visualized. The method can be readily extended to other two-dimensional systems, as the training is based on unit-cell-level images. Therefore, our results outline novel ways to train the model with minimal data sets, offering great opportunities to fully exploit the power of DL in the materials science community.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    纳米材料的结构和化学表征为理解其功能特性提供了重要信息。具有纳米范围内的特征结构尺寸的纳米材料可以通过扫描透射电子显微镜(STEM)表征。在传统的STEM中,获取样本的二维(2D)投影图像,关于第三维度的信息丢失。这个缺点可以通过STEM层析成像来克服,其中,从使用各种投影方向获取的一系列投影图像重建三维(3D)结构。然而,3D测量在获取和评估时间方面是昂贵的。此外,该方法很难适用于光束敏感材料,即在电子束下降解的样品。出于这个原因,需要知道是否可以从2D投影测量中提取关于结构和化学信息的足够信息。在目前的工作中,提供了纳米粒子异质聚集体的结构和混合的3D重建和2D投影表征之间的比较。为此,卷积神经网络在2D和3D中训练,以从模拟或实验测量中提取粒子位置和材料类型。结果用于评估结构,粒度分布,异质聚集体成分和颗粒的定量混合,并找到问题的答案,该材料系统是否需要昂贵的3D表征,以便将来进行表征。
    Structural and chemical characterization of nanomaterials provides important information for understanding their functional properties. Nanomaterials with characteristic structure sizes in the nanometer range can be characterized by scanning transmission electron microscopy (STEM). In conventional STEM, two-dimensional (2D) projection images of the samples are acquired, information about the third dimension is lost. This drawback can be overcome by STEM tomography, where the three-dimensional (3D) structure is reconstructed from a series of projection images acquired using various projection directions. However, 3D measurements are expensive with respect to acquisition and evaluation time. Furthermore, the method is hardly applicable to beam-sensitive materials, i.e. samples that degrade under the electron beam. For this reason, it is desirable to know whether sufficient information on structural and chemical information can be extracted from 2D-projection measurements. In the present work, a comparison between 3D-reconstruction and 2D-projection characterization of structure and mixing in nanoparticle hetero-aggregates is provided. To this end, convolutional neural networks are trained in 2D and 3D to extract particle positions and material types from the simulated or experimental measurement. Results are used to evaluate structure, particle size distributions, hetero-aggregate compositions and mixing of particles quantitatively and to find an answer to the question, whether an expensive 3D characterization is required for this material system for future characterizations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    食品中的金属亚微粒(SMP)和纳米颗粒(NPs)的存在归因于原材料和成品中来自环境的污染增加。在本研究中,基于环境扫描电子显微镜和大角度环形暗场扫描透射电子显微镜以及能量色散X射线光谱的多方面分析策略(ESEM-EDX,HAADF-STEM-EDX)和电感耦合等离子体质谱法(ICP-MS)被提出用于硬粒小麦样品中金属和含金属的SMPs和NPs的检测和表征,涵盖从1nm到多个µm的尺寸测量范围。ESEM-EDX和ICP-MS技术用于评估从七个具有不同自然和人为条件的地理区域收集的小麦籽粒表面的SMP和NP污染,即意大利,美国,澳大利亚,斯洛伐克,墨西哥,奥地利,和俄罗斯。ICP-MS显示金属的平均浓度水平之间存在显着差异,美国和意大利的水平最高。ESEM-EDX分析证实了ICP-MS浓度测量,并测量了来自意大利的样品中尺寸<0.8μm的颗粒的最高存在。其次是美国。当考虑颗粒<0.15μm时,观察到较少显著的差异。HAADF-STEM-EDX应用于选定数量的样品,以初步评估金属SMP和NP的内部污染,并扩大可测量的粒径范围。多方面的方法为含Fe的SMP和NP提供了类似的结果。ICP-MS和ESEM-EDX还强调了大量含Ti和Al的颗粒的存在,而对于STEM-EDX,样品制备工件使解释变得复杂。最后,HAADF-STEM-EDX结果提供了有关低nm范围内颗粒的相关信息,因为,通过应用这种技术,根据ESEM-EDX没有观察到小于50nm的颗粒。
    Metal sub-microparticles (SMPs) and nanoparticles (NPs) presence in food is attributable to increasing pollution from the environment in raw materials and finished products. In the present study, a multifaceted analytical strategy based on Environmental Scanning Electron Microscopy and High-Angle Annular Dark-Field-Scanning Transmission Electron Microscopy coupled with Energy-Dispersive X-ray Spectroscopy (ESEM-EDX, HAADF-STEM-EDX) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was proposed for the detection and characterization of metal and metal-containing SMPs and NPs in durum wheat samples, covering a size measurement range from 1 nm to multiple µm. ESEM-EDX and ICP-MS techniques were applied for the assessment of SMP and NP contamination on the surface of wheat grains collected from seven geographical areas characterized by different natural and anthropic conditions, namely Italy, the USA, Australia, Slovakia, Mexico, Austria, and Russia. ICP-MS showed significant differences among the mean concentration levels of metals, with the USA and Italy having the highest level. ESEM-EDX analysis confirmed ICP-MS concentration measurements and measured the highest presence of particles < 0.8 µm in size in samples from Italy, followed by the USA. Less marked differences were observed when particles < 0.15 µm were considered. HAADF-STEM-EDX was applied to a selected number of samples for a preliminary assessment of internal contamination by metal SMPs and NPs, and to expand the measurable particle size range. The multifaceted approach provided similar results for Fe-containing SMPs and NPs. ICP-MS and ESEM-EDX also highlighted the presence of a significant abundance of Ti- and Al-containing particles, while for STEM-EDX, sample preparation artifacts complicated the interpretation. Finally, HAADF-STEM-EDX results provided relevant information about particles in the low nm range, since, by applying this technique, no particles smaller than 50 nm were observed in accordance with ESEM-EDX.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    二氧化钒(VO2)的金属-绝缘体(MI)转变被氧空位有效地调制,这降低了转变温度和绝缘电阻。薄膜中的氧空位可以通过使用电化学势的氧传输来驱动。这项研究深入研究了VO2中晶体学通道在促进氧传输和随后的电性能调节中的作用。设计了一种模型系统,具有两种类型的VO2薄膜:(100)和(001)取向,其中通道与表面平行和垂直对齐,分别。在这些VO2膜上生长缺氧的TiO2层促使氧从VO2传输到TiO2。值得注意的是,在(001)-VO2薄膜中,氧离子沿着开放通道移动,氧迁移使耗尽区域加深,超过(100)-VO2,导致金属-绝缘体过渡行为发生更明显的变化。研究结果强调了理解固有晶体结构的重要性,如通道通路,在控制离子缺陷和定制电气性能的应用。
    The metal-insulator (MI) transition of vanadium dioxide (VO2) is effectively modulated by oxygen vacancies, which decrease the transition temperature and insulating resistance. Oxygen vacancies in thin films can be driven by oxygen transport using electrochemical potential. This study delves into the role of crystallographic channels in VO2 in facilitating oxygen transport and the subsequent tuning of electrical properties. A model system is designed with two types of VO2 thin films: (100)- and (001)-oriented, where channels align parallel and perpendicular to the surface, respectively. Growing an oxygen-deficient TiO2 layer on these VO2 films prompted oxygen transport from VO2 to TiO2. Notably, in (001)-VO2 film, where oxygen ions move along the open channels, the oxygen migration deepens the depleted region beyond that in (100)-VO2, leading to more pronounced changes in metal-insulator transition behaviors. The findings emphasize the importance of understanding the intrinsic crystal structure, such as channel pathways, in controlling ionic defects and customizing electrical properties for applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    鉴于骨骼和骨骼界面的分层性质,骨整合,即直接骨-植入物接触的形成,最好使用多尺度方法进行评估。然而,视场和空间分辨率之间存在权衡,使其具有挑战性的图像大体积与高分辨率。在这项研究中,我们将已建立的电子显微镜技术与等离子体聚焦离子束扫描电子显微镜(PFIB-SEM)断层扫描相结合,以在微观和纳米尺度上探测骨-植入物界面,以评估中尺度的骨整合。这种表征工作流程证明了对增材制造的Ti-6Al-4V植入物的骨骼反应,该植入物结合了工程孔隙度以促进骨骼向内生长和通过金雀异黄素的表面功能化,植物雌激素,以抵消骨质疏松症的骨质流失。SEM显示了植入部位的新骨形成,包括在植入物的内部孔隙中。在纳米级,扫描透射电子显微镜和能量色散X射线光谱证实了骨-植入物界面的渐变性质。通过利用PFIB-SEM断层扫描的中尺度分析,以近纳米级分辨率捕获大量的骨-植入物界面,揭示了大小和方向不同的矿物椭圆体的存在。此外,突出显示了发育良好的腔小管网络和朝向植入物和远离植入物的矿化前沿。
    Given the hierarchical nature of bone and bone interfaces, osseointegration, namely the formation of a direct bone-implant contact, is best evaluated using a multiscale approach. However, a trade-off exists between field of view and spatial resolution, making it challenging to image large volumes with high resolution. In this study, we combine established electron microscopy techniques to probe bone-implant interfaces at the microscale and nanoscale with plasma focused ion beam-scanning electron microscopy (PFIB-SEM) tomography to evaluate osseointegration at the mesoscale. This characterization workflow is demonstrated for bone response to an additively manufactured Ti-6Al-4V implant which combines engineered porosity to facilitate bone ingrowth and surface functionalization via genistein, a phytoestrogen, to counteract bone loss in osteoporosis. SEM demonstrated new bone formation at the implant site, including in the internal implant pores. At the nanoscale, scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy confirmed the gradual nature of the bone-implant interface. By leveraging mesoscale analysis with PFIB-SEM tomography that captures large volumes of bone-implant interface with nearly nanoscale resolution, the presence of mineral ellipsoids varying in size and orientation was revealed. In addition, a well-developed lacuno-canalicular network and mineralization fronts directed both towards the implant and away from it were highlighted.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    顺序渗透合成(SIS),也称为气相渗透(VPI),是一种快速扩展的技术,可以从气相前体在聚合物中生长无机材料。随着材料库的不断增加,其中包括许多有机金属前体和聚合物化学物质,和不断扩大的应用空间,理解控制SIS生长的机制的重要性日益增加。在这项工作中,我们研究了多晶ZnO团簇和颗粒在三种代表性聚合物中的生长:聚(甲基丙烯酸甲酯),SU-8和聚甲基丙烯醛,使用气相二乙基锌和水。利用两种原子分辨率方法,高分辨率扫描透射电子显微镜和同步加速器X射线吸收光谱,我们探索了聚合物内部ZnO纳米晶体尺寸和结晶度水平的演变,随着周期的推进──从单个周期后的早期成核和生长,通过在薄膜内形成纳米颗粒,以及在聚合物去除和热处理时颗粒的聚结。通过原位傅里叶变换红外光谱和微重分析,我们强调了水分子在整个过程中的重要作用和聚合物的吸湿性水平,这导致了观察到的聚合物之间生长模式的差异,就粒度而言,分散性,和晶体秩序的演变。这些见解扩展了我们对聚合物中晶体材料生长的理解,并使混合材料和聚合物模板无机纳米结构的合理设计成为可能。
    Sequential infiltration synthesis (SIS), also known as vapor phase infiltration (VPI), is a quickly expanding technique that allows growth of inorganic materials within polymers from vapor phase precursors. With an increasing materials library, which encompasses numerous organometallic precursors and polymer chemistries, and an expanding application space, the importance of understanding the mechanisms that govern SIS growth is ever increasing. In this work, we studied the growth of polycrystalline ZnO clusters and particles in three representative polymers: poly(methyl methacrylate), SU-8, and polymethacrolein using vapor phase diethyl zinc and water. Utilizing two atomic resolution methods, high-resolution scanning transmission electron microscopy and synchrotron X-ray absorption spectroscopy, we probed the evolution of ZnO nanocrystals size and crystallinity level inside the polymers with advancing cycles─from early nucleation and growth after a single cycle, through the formation of nanometric particles within the films, and to the coalescence of the particles upon polymer removal and thermal treatment. Through in situ Fourier transform infrared spectroscopy and microgravimetry, we highlight the important role of water molecules throughout the process and the polymers\' hygroscopic level that leads to the observed differences in growth patterns between the polymers, in terms of particle size, dispersity, and the evolution of crystalline order. These insights expand our understanding of crystalline materials growth within polymers and enable rational design of hybrid materials and polymer-templated inorganic nanostructures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号