ruthenium tetroxide

四氧化钌
  • 文章类型: Journal Article
    异恶唑烷的直接氧化反应在有机化学中起着重要作用,导致生物活性化合物的合成。在本文中,我们报告了RuO4催化氧化不同N-取代的异恶唑烷1a-c的计算机理研究。注意力集中在内/外氧化选择性上。对于所有研究的化合物,exo攻击优于endo攻击,显示exo百分比与沿反应路径发现的瞬时碳阳离子的稳定性顺序平行增长。该研究得到了实验数据的支持,这些数据很好地证实了建模结果。
    The direct oxidation reaction of isoxazolidines plays an important role in organic chemistry, leading to the synthesis of biologically active compounds. In this paper, we report a computational mechanistic study of RuO4-catalyzed oxidation of differently N-substituted isoxazolidines 1a-c. Attention was focused on the endo/exo oxidation selectivity. For all the investigated compounds, the exo attack is preferred to the endo one, showing exo percentages growing in parallel with the stability order of transient carbocations found along the reaction pathway. The study has been supported by experimental data that nicely confirm the modeling results.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    一些乳酸菌能够产生胞外多糖,基于本地化,可以在游离和荚膜或细胞结合的胞外多糖(CPS)中区分。到目前为止,前者是当前研究的重点,主要是因为它们在发酵乳制品上表现出的技术功能优势。另一方面,CPS会影响细菌细胞的表面特性,从而影响发酵食品的质地特性,但是数据非常稀缺。由于细胞表面特性强烈依赖于应变,我们提出了一种新的方法来研究CPS对细胞表面疏水性和水分负荷的影响。对CPS阳性和阴性的嗜热链球菌和cybariaWeissella进行超声处理,以分离CPS而不会造成细胞损伤。通过扫描电子显微镜和光学显微镜以及培养实验验证了该方法的成功。在使用CPS表现出增加的亲水性的超声处理细胞之前,增强水分负荷,与CPS去除后的细胞相比,水的吸附速度更快,强调CPS对发酵产品质构特性的重要性。超声处理不改变CPS阴性菌株的细胞表面性质。
    Some lactic acid bacteria are able to produce exopolysaccharides that, based on localization, can be distinguished in free and capsular or cell-bound exopolysaccharides (CPS). Up to now, the former were the focus of current research, mainly because of the technofunctional benefits they exhibit on fermented dairy products. On the other hand, CPS affect the surface properties of bacteria cells and thus also the textural properties of fermented foods, but data are very scarce. As the cell surface properties are strongly strain dependent, we present a new approach to investigate the impact of CPS on cell surface hydrophobicity and moisture load. CPS positive and negative Streptococcus thermophilus and Weissella cibaria were subjected to ultrasonication suitable to detach CPS without cell damage. The success of the method was verified by scanning electron and light microscopy as well as by cultivation experiments. Before applying ultrasonication cells with CPS exhibiting an increased hydrophilic character, enhanced moisture load, and faster water adsorption compared to the cells after CPS removal, emphasizing the importance of CPS on the textural properties of fermented products. The ultrasonic treatment did not alter the cell surface properties of the CPS negative strains.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Lobomycosis is a skin infection produced by the fungus Lacazia loboi, which mainly affects some indigenous and afro-descendant populations in Tropical America. We previously reported the comparative effect of osmium tetroxide (OsO4 ) and ruthenium tetroxide (RuO4 ) in the electron microscopy (EM) of other related microorganisms. The objective of this study is to compare the effect of postfixation with OsO4 and RuO4 in the ultrastructure of L. loboi yeasts. Skin biopsies on patients diagnosed with lobomycosis were fixed in glutaraldehyde at 3% and postfixed in the following solutions: (a) 1% OsO4 , (b) 0.2% RuO4 , and (c) OsO4 at 1% followed by RuO4 at 0.2%. They were then processed using the conventional method for EM. Unlike OsO4, the treatment with RuO4 revealed different shades of gray and electron dense bands in the cell wall and other cell components of L. loboi. The most notable finding was the presence of radial filamentous structures around the yeast, which made the image look like the sun. Postfixation with RuO4 revealed ultrastructural details that had not been previously reported for L loboi. The combined use of OsO4 and RuO4 in EM of microorganisms with cell walls can be useful to evaluate the effect of microbicide substances.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    四氧化钌介导的环戊烷氧化,四氢呋喃,四氢噻吩和N-取代的吡咯烷已通过DFT和拓扑进行了计算研究(电子定位函数的分析,ELF)方法。与实验观察和先前的DFT计算一致,反应的限速步骤是通过单个过渡结构(一个动力学步骤)通过高度异步(32)协同环加成进行的。ELF分析将反应确定为典型的一步两步过程,并证实了瞬态碳阳离子的存在。在吡咯烷的情况下,碳阳离子以亚胺离子的形式完全稳定为能量最小值,反应分两步进行。
    The ruthenium tetroxide-mediated oxidation of cyclopentane, tetrahydrofuran, tetrahydrothiophene and N-substituted pyrrolidines has been studied computationally by DFT and topological (analysis of the electron localization function, ELF) methods. In agreement with experimental observations and previous DFT calculations, the rate-limiting step of the reaction takes place through a highly asynchronous (3 + 2) concerted cycloaddition through a single transition structure (one kinetic step). The ELF analysis identifies the reaction as a typical one-step-two-stages process and corroborates the existence of a transient carbocation. In the case of pyrrolidines, the carbocation is completely stabilized as an energy minimum in the form of an iminium ion and the reaction takes place in two steps.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Imaging mass cytometry is a novel imaging modality that enables simultaneous antibody-based detection of >40 epitopes and molecules in tissue sections at subcellular resolution by the use of isotopically pure metal tags. Essential for any imaging approach in which antigen detection is performed is counterstaining, which reveals the overall structure of the tissue. Counterstaining is necessary because antigens of interest are often present in only a small subset of cells, and the rest of the tissue structures are not visible. As most biological tissues are nearly transparent or non-fluorescent, chromogenic reagents such as haematoxylin (for immunohistochemistry) or fluorescent dyes such as 4\',6-diamidino-2-phenylindole (which stains nuclei for epifluorescence and confocal microscopy) are utilized. Here, we describe a metal-based counterstain for imaging mass cytometry based on simple oxidation and subsequent covalent binding of the tissue components to ruthenium tetroxide (RuO4 ). RuO4 counterstaining reveals general tissue structure both in areas with high cell content and in stromal areas with low cellularity and fibrous or hyaline material in a manner analogous to haematoxylin in immunohistochemical counterstaining or eosin or other anionic dyes in conventional histology. Our new counterstain approach is applicable to any metal-based imaging technique, and will facilitate the adaptation of imaging mass cytometry for routine applications in clinical and research laboratories. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Ruthenium is a fission product that can be released from the fuel in case of a severe nuclear accident. In this work the impact of the atmosphere composition, including air radiolysis products, on the transport of ruthenium through a primary circuit was examined. Experiments were performed at temperatures 1300, 1500 and 1700 K in a slightly humid air. In the experiments significant effect of nitrogen oxides (N2O, NO2) and nitric acid on the ruthenium chemistry in the model primary circuit was observed. The obtained results indicate a strong effect of air radiolysis products on the quantity partitioning of transported ruthenium to gaseous and aerosol compounds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    This work examines the chemical synthesis of 3,4-methylenedioxy-N-methylamphetamine (MDMA) from piperonal prepared via a catalytic ruthenium tetroxide oxidation of piperine extracted from black pepper. A variety of oxidation conditions were experimented with including different solvent systems and co-oxidants. A sample of prepared piperonal was successfully converted into MDMA via 3,4-methylenedioxyphenyl-2-nitropropene (MDP2NP) and 3,4-methylenedioxyphenyl-2-propanone (MDP2P) and the impurities within each product characterised by GC-MS to give a contaminant profile of the synthetic pathway. Interestingly, it was discovered that a chlorinated analogue of piperonal (6-chloropiperonal) was created during the oxidation process by an as yet unknown mechanism. This impurity reacted alongside piperonal to give chlorinated analogues of each precursor, ultimately yielding 2-chloro-4,5-methylenedioxymethamphetamine (6-Cl-MDMA) as an impurity within the MDMA sample. The methodology developed is a simple way to synthesise a substantial amount of precursor material with easy to obtain reagents. The results also show that chlorinated MDMA analogues, previously thought to be deliberately included adulterants, may in fact be route specific impurities with potential application in determining the origin and synthesis method of seized illicit drugs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Mass cytometry facilitates high-dimensional, quantitative, single-cell analysis. The method for sample multiplexing in mass cytometry, called mass-tag cellular barcoding (MCB), relies on the covalent reaction of bifunctional metal chelators with intracellular proteins. Here, we describe the use of osmium and ruthenium tetroxides (OsO4 and RuO4 ) that bind covalently with fatty acids in the cellular membranes and aromatic amino acids in proteins. Both OsO4 and RuO4 rapidly reacted and allowed for MCB with live cells, crosslinked cells, and permeabilized cells. Given the covalent nature of the labeling reaction, isotope leaching was not observed. OsO4 and RuO4 were used in a 20-sample barcoding protocol together with palladium isotopes. As mass channels occupied by osmium and ruthenium are not used for antibody detection the number of masses effectively utilized in a single experiment is expanded. OsO4 and RuO4 can therefore be used as MCB reagents for a wide range of mass cytometry workflows. © 2016 International Society for Advancement of Cytometry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号