ribosomal proteins

核糖体蛋白质类
  • 文章类型: Journal Article
    头颈部鳞状细胞癌(HNSCC)是一种恶性肿瘤,其特征是发病率和复发率高。5-甲基胞嘧啶(m5C)RNA修饰是影响癌症进展的常见改变;然而,m5C如何在HNSCC的肿瘤微环境中运作还有待阐明。
    我们对来自中期和晚期HNSCC的3对癌症和癌旁组织进行了纳米孔测序,获得132个上调的基因(转录上调,m5C升高)和129个下调基因(转录下调,m5C减少)。随后进行了基因本体论(GO)和京都基因和基因组百科全书(KEGG)富集分析;构建了差异基因相互作用网络(PPI),揭示网络中每个基因与其他基因的相互作用。对PPI内的基因进行共表达分析,揭示他们的表达和监管关系。通过GSVA分析,确定了不同状态下相关途径的变化。此外,lncRNA中m5C的筛选结果,其次是靶基因预测。
    来自3对中晚期HNSCC癌和癌旁组织的测序结果表明,RPS27A,RPL8和lncRNAs,包括分化拮抗非蛋白编码RNA(DANCR),DCST1反义RNA1(CCDC144NL-AS1),增长逮捕特定转录本5(GAS5),核旁斑装配转录本1(NEAT1),和小核仁RNA宿主基因3(SNHG3),等。,根据m5C规定,与周围的基因有密切的联系。差异m5C修饰基因主要参与核糖体蛋白合成,氧化应激反应,代谢重编程,豁免权,和其他生命过程;线粒体蛋白导入和光动力疗法诱导的未折叠蛋白反应等途径在肿瘤中上调,而路径,包括经典的P53,都被压制了。对m5C调节的长链非编码RNA(lncRNA)的分析也揭示了与RPS27A和RPL8的紧密关联。
    我们的研究确定了HNSCC中涉及m5C的关键因素和信号通路。研究结果表明,核糖体相关基因可能调节核糖体蛋白的合成,氧化应激反应,代谢重编程,通过缺氧和铁凋亡等方式通过m5CRNA修饰进行免疫反应,从而在HNSCC的发生和发展中起关键作用。因此,应注意核糖体在HNSCC中的作用。这些发现可能有助于临床中,晚期HNSCC患者的精确和个性化治疗。
    UNASSIGNED: Head and Neck Squamous Cell Carcinoma (HNSCC) is a malignancy characterized by a high incidence and recurrence rate. 5-methylcytosine (m5C) RNA modification is a common alteration affecting cancer progression; however, how m5C operates within the tumor microenvironment of HNSCC remains to be elucidated.
    UNASSIGNED: We conducted Nanopore sequencing on 3 pairs of cancer and paracancerous tissues from mid- and late-stage HNSCC, obtaining 132 upregulated genes (transcriptomically upregulated, m5C elevated) and 129 downregulated genes (transcriptomically downregulated, m5C reduced). Subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed; a differential gene interaction network (PPI) was constructed, revealing the interactions of each gene with others in the network. Co-expression analysis was performed on the genes within the PPI, unveiling their expression and regulatory relationships. Through GSVA analysis, variations in related pathways under different states were identified. Furthermore, results of m5C in lncRNA were screened, followed by target gene prediction.
    UNASSIGNED: Sequencing results from the 3 pairs of mid- and late-stage HNSCC cancer and paracancerous tissues demonstrated that RPS27A, RPL8, and the lncRNAs including differentiation antagonizing nonprotein coding RNA (DANCR), DCST1 antisense RNA 1 (CCDC144NL-AS1), Growth Arrest-Specific Transcript 5 (GAS5), Nuclear Paraspeckle Assembly Transcript 1 (NEAT1), and Small Nucleolar RNA Host Gene 3 (SNHG3), etc., under m5Cregulation, have close connections with surrounding genes. The differentially m5Cmodified genes are primarily involved in ribosomal protein synthesis, oxidative stress response, metabolic reprogramming, immunity, and other life processes; pathways like mitochondrial protein import and photodynamic therapy induced unfolded protein response are upregulated in the tumor, while pathways, including the classic P53, are suppressed. Analysis on m5C-regulated long non-coding RNAs (lncRNAs) revealed tight associations with RPS27A and RPL8 as well.
    UNASSIGNED: Our study identifies the key factors and signaling pathways involving m5C in HNSCC. The findings suggest that ribosome-related genes might regulate ribosomal protein synthesis, oxidative stress response, metabolic reprogramming, and immune response through m5C RNA modification by means like hypoxia and ferroptosis, thereby playing a pivotal role in the onset and progression of HNSCC. Hence, attention should be paid to the role of ribosomes in HNSCC. These findings may facilitate the precision and individualized treatment of patients with mid- and late-stage HNSCC in clinical settings.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    微卫星不稳定性高(MSI-H)肿瘤是恶性肿瘤,尽管有很高的突变负担,经常有完整的TP53。MSI-H肿瘤中最常见的突变之一是核糖体蛋白RPL22中的移码突变。这里,我们通过外显子6中的可变剪接开关将RPL22鉴定为MDM4剪接的调制器。RPL22缺失增加MDM4外显子6包涵体和细胞增殖,并增加对MDM抑制剂Nutlin-3a的抗性。RPL22抑制其旁系物的表达,RPL22L1,通过介导对应于截短转录物的隐蔽外显子的剪接。因此,RPL22中的破坏性突变驱动致癌MDM4诱导,并揭示MSI-H肿瘤中常见的剪接回路,这可能为MDM4-p53轴和致癌RPL22L1诱导的治疗靶向提供信息。
    Microsatellite instability-high (MSI-H) tumors are malignant tumors that, despite harboring a high mutational burden, often have intact TP53. One of the most frequent mutations in MSI-H tumors is a frameshift mutation in RPL22, a ribosomal protein. Here, we identified RPL22 as a modulator of MDM4 splicing through an alternative splicing switch in exon 6. RPL22 loss increases MDM4 exon 6 inclusion and cell proliferation and augments resistance to the MDM inhibitor Nutlin-3a. RPL22 represses the expression of its paralog, RPL22L1, by mediating the splicing of a cryptic exon corresponding to a truncated transcript. Therefore, damaging mutations in RPL22 drive oncogenic MDM4 induction and reveal a common splicing circuit in MSI-H tumors that may inform therapeutic targeting of the MDM4-p53 axis and oncogenic RPL22L1 induction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    核糖体受进化保守的泛素化/去泛素化事件的调控。我们揭示了去泛素酶OTUD6在果蝇体内通过游离40S核糖体上RPS7/eS7亚基的去泛素化来调节整体蛋白质翻译中的作用。来自无催化活性的OTUD6果蝇的单泛素化蛋白的免疫共沉淀和富集揭示了RPS7作为核糖体底物。40S蛋白RACK1和E3连接酶CNOT4和RNF10在OTUD6的上游起作用以调节烷基化胁迫。OTUD6与RPS7特别是在免费的40S上进行交互,而不是在43S/48S起始复合物或翻译核糖体上。整体蛋白质翻译水平由OTUD6蛋白质丰度双向调节。OTUD6蛋白质丰度在衰老以及对翻译和烷基化胁迫的反应中受到生理调节。因此,OTUD6可能会促进翻译启动,蛋白质翻译中的限速步骤,通过滴定回收的40S核糖体的数量。
    Ribosomes are regulated by evolutionarily conserved ubiquitination/deubiquitination events. We uncover the role of the deubiquitinase OTUD6 in regulating global protein translation through deubiquitination of the RPS7/eS7 subunit on the free 40 S ribosome in vivo in Drosophila. Coimmunoprecipitation and enrichment of monoubiquitinated proteins from catalytically inactive OTUD6 flies reveal RPS7 as the ribosomal substrate. The 40 S protein RACK1 and E3 ligases CNOT4 and RNF10 function upstream of OTUD6 to regulate alkylation stress. OTUD6 interacts with RPS7 specifically on the free 40 S, and not on 43 S/48 S initiation complexes or the translating ribosome. Global protein translation levels are bidirectionally regulated by OTUD6 protein abundance. OTUD6 protein abundance is physiologically regulated in aging and in response to translational and alkylation stress. Thus, OTUD6 may promote translation initiation, the rate limiting step in protein translation, by titering the amount of 40 S ribosome that recycles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Elastin,一种对皮肤和弹性组织的弹性至关重要的关键结构蛋白,随着年龄的增长而退化。补充弹性蛋白有望用于抗衰老化妆品和补充心血管系统的弹性活动。我们用了RiboScreenTM,一种鉴定能增强特定蛋白质生产的分子的技术,以产生原弹性蛋白为目标。我们在两个关键步骤中使用RiboScreenTM:首先,为了确定目标核糖体蛋白(TRP),作为增加目标蛋白(POI)产量的开关,第二,鉴定激活核糖体蛋白开关的小分子。使用RiboScreenTM,我们确定核糖体蛋白L40,以下称为eL40,作为TRP开关,可促进原弹性蛋白的产生.药物发现发现了一种与eL40结合的小分子命中。细胞内处理证明了eL40配体的活性,并以剂量依赖性方式递送了增加的原弹性蛋白产生水平。因此,我们证明RiboScreenTM可以成功地鉴定能够选择性增强原弹性蛋白产生的小分子命中。该化合物具有被开发用于局部或全身应用以促进皮肤恢复和补充心血管系统内的弹性功能的潜力。
    Elastin, a key structural protein essential for the elasticity of the skin and elastogenic tissues, degrades with age. Replenishing elastin holds promise for anti-aging cosmetics and the supplementation of elastic activities of the cardiovascular system. We employed RiboScreenTM, a technology for identifying molecules that enhance the production of specific proteins, to target the production of tropoelastin. We make use of RiboScreenTM in two crucial steps: first, to pinpoint a target ribosomal protein (TRP), which acts as a switch to increase the production of the protein of interest (POI), and second, to identify small molecules that activate this ribosomal protein switch. Using RiboScreenTM, we identified ribosomal protein L40, henceforth eL40, as a TRP switch to boost tropoelastin production. Drug discovery identified a small-molecule hit that binds to eL40. In-cell treatment demonstrated activity of the eL40 ligand and delivered increased tropoelastin production levels in a dose-dependent manner. Thus, we demonstrate that RiboScreenTM can successfully identify a small-molecule hit capable of selectively enhancing tropoelastin production. This compound has the potential to be developed for topical or systemic applications to promote skin rejuvenation and to supplement elastic functionality within the cardiovascular system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肿瘤抑制因子p53及其拮抗剂MDM2和MDM4整合应激信号。例如,核仁中核糖体的不平衡组装诱导p53。这里,我们显示核糖体蛋白L22(RPL22;eL22),在核糖体和核仁应激的条件下,促进MDM4外显子6的跳过。L22耗尽后,保持更多全长MDM4,导致p53活性降低和细胞增殖增强。L22与MDM4内含子6内的特定RNA元件结合,对应于茎环共有序列,导致6号外显子跳跃.这些内含子元件的靶向缺失在很大程度上消除了L22介导的外显子跳跃,并重新实现了细胞增殖。尽管有核仁应力。L22还控制L22L1(RPL22L1)和UBAP2LmRNA的可变剪接。因此,L22充当整合不同基因表达层的信号传导中间体。核糖体合成中的缺陷导致特定的可变剪接,最终触发p53介导的转录并阻止细胞增殖。
    The tumor suppressor p53 and its antagonists MDM2 and MDM4 integrate stress signaling. For instance, dysbalanced assembly of ribosomes in nucleoli induces p53. Here, we show that the ribosomal protein L22 (RPL22; eL22), under conditions of ribosomal and nucleolar stress, promotes the skipping of MDM4 exon 6. Upon L22 depletion, more full-length MDM4 is maintained, leading to diminished p53 activity and enhanced cellular proliferation. L22 binds to specific RNA elements within intron 6 of MDM4 that correspond to a stem-loop consensus, leading to exon 6 skipping. Targeted deletion of these intronic elements largely abolishes L22-mediated exon skipping and re-enables cell proliferation, despite nucleolar stress. L22 also governs alternative splicing of the L22L1 (RPL22L1) and UBAP2L mRNAs. Thus, L22 serves as a signaling intermediate that integrates different layers of gene expression. Defects in ribosome synthesis lead to specific alternative splicing, ultimately triggering p53-mediated transcription and arresting cell proliferation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    程序性死亡配体1与吞噬体中的真菌核糖体Rpl20b相互作用并诱导白细胞介素10分泌。
    Programmed death-ligand 1 interacts with fungal ribosomal Rpl20b in phagosomes and induces interleukin-10 secretion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    氨基糖苷类抗生素靶向核糖体并且对多种细菌有效。这里,我们证明,与大肠杆菌能量代谢相关的敲除菌株在指数生长中期对氨基糖苷类药物的耐受性增加。与预期相反,这些突变并没有降低质子动力或氨基糖苷的摄取,因为野生型和突变株之间的代谢指标或胞内庆大霉素水平没有显著变化。我们全面的蛋白质组学分析揭示了在中期指数生长阶段,突变菌株中与三羧酸(TCA)循环相关的蛋白质的显著上调。表明这些菌株通过增加TCA循环活性以维持其膜电位和ATP水平来补偿其能量代谢的扰动。此外,我们的途径富集分析揭示了在所有突变菌株中显示下调的本地网络簇,它们与大的和小的核糖体结合蛋白有关,核糖体生物发生,翻译因子活动,以及核糖核苷一磷酸的生物合成。这些发现为突变菌株中观察到的氨基糖苷的耐受性提供了合理的解释。总之,这项研究为氨基糖苷耐受的机制提供了有价值的见解,为打击此类细胞的新策略铺平了道路。
    对抗生素药物耐药的细菌对全球人类健康构成重大挑战。它们获得了基因突变,使它们能够在一种或多种抗生素的存在下生存和生长,这使得临床医生更难从危及生命的感染患者中消除这种细菌。一些细菌可能能够通过改变它们的生长和行为来暂时发展对抗生素的耐受性,没有获得任何新的基因突变。这种耐药细菌更有可能存活足够长的时间以获得可能促进耐药性的突变。最近的研究表明,参与过程的基因统称为能量代谢,将食物来源转化为细胞生存和生长所需的化学能量,可能在耐受性和抗性方面都起作用。例如,当暴露于称为氨基糖苷类的抗生素家族成员时,大肠杆菌细菌会在能量代谢基因中发生突变。然而,目前尚不清楚能量代谢在抗生素耐受中的确切作用。为了解决这个问题,Shiraliyev和Orman研究了一系列影响能量代谢的具有不同基因突变的大肠杆菌菌株如何在氨基糖苷类药物存在下存活。实验发现,大多数突变菌株对药物的耐受性高于正常大肠杆菌。出乎意料的是,这种增加的耐受性似乎不是由于进入突变细菌细胞的药物比进入正常细胞的药物少(一种常见的耐药性和耐受性策略).使用一种技术进行进一步的实验,被称为蛋白质组学,揭示了许多参与能量代谢的基因在突变细菌中上调,表明这些细胞正在补偿它们的遗传异常。此外,突变细菌的抗生素靶向分子水平低于正常细菌。Shiraliyev和Orman的发现为细菌如何耐受氨基糖苷类抗生素提供了重要见解。在未来,这可能会指导开发新的策略来对抗细菌性疾病。
    Aminoglycoside antibiotics target ribosomes and are effective against a wide range of bacteria. Here, we demonstrated that knockout strains related to energy metabolism in Escherichia coli showed increased tolerance to aminoglycosides during the mid-exponential growth phase. Contrary to expectations, these mutations did not reduce the proton motive force or aminoglycoside uptake, as there were no significant changes in metabolic indicators or intracellular gentamicin levels between wild-type and mutant strains. Our comprehensive proteomics analysis unveiled a noteworthy upregulation of proteins linked to the tricarboxylic acid (TCA) cycle in the mutant strains during the mid-exponential growth phase, suggesting that these strains compensate for the perturbation in their energy metabolism by increasing TCA cycle activity to maintain their membrane potential and ATP levels. Furthermore, our pathway enrichment analysis shed light on local network clusters displaying downregulation across all mutant strains, which were associated with both large and small ribosomal binding proteins, ribosome biogenesis, translation factor activity, and the biosynthesis of ribonucleoside monophosphates. These findings offer a plausible explanation for the observed tolerance of aminoglycosides in the mutant strains. Altogether, this research provides valuable insights into the mechanisms of aminoglycoside tolerance, paving the way for novel strategies to combat such cells.
    Bacteria that are resistant to antibiotic drugs pose a significant challenge to human health around the globe. They have acquired genetic mutations that allow them to survive and grow in the presence of one or more antibiotics, making it harder for clinicians to eliminate such bacteria from human patients with life-threatening infections. Some bacteria may be able to temporarily develop tolerance to an antibiotic by altering how they grow and behave, without acquiring any new genetic mutations. Such drug-tolerant bacteria are more likely to survive long enough to gain mutations that may promote drug resistance. Recent studies suggest that genes involved in processes collectively known as energy metabolism, which convert food sources into the chemical energy cells need to survive and grow, may play a role in both tolerance and resistance. For example, Escherichia coli bacteria develop mutations in energy metabolism genes when exposed to members of a family of antibiotics known as the aminoglycosides. However, it remains unclear what exact role energy metabolism plays in antibiotic tolerance. To address this question, Shiraliyev and Orman studied how a range of E. coli strains with different genetic mutations affecting energy metabolism could survive in the presence of aminoglycosides. The experiments found that most of the mutant strains had a higher tolerance to the drugs than normal E. coli. Unexpectedly, this increased tolerance did not appear to be due to the drugs entering the mutant bacterium cells less than they enter normal cells (a common strategy of drug resistance and tolerance). Further experiments using a technique, known as proteomics, revealed that many genes involved in energy metabolism were upregulated in the mutant bacteria, suggesting these cells were compensating for the genetic abnormalities they have. Furthermore, the mutant bacteria had lower levels of the molecules the antibiotics target than normal bacteria. The findings of Shiraliyev and Orman offer critical insights into how bacteria become tolerant of aminoglycoside antibiotics. In the future, this may guide the development of new strategies to combat bacterial diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    低于平均人口或假定的家族目标身高超过2SD的生长迟缓被归类为身材矮小,可能是许多疾病的临床表现。近年来,使用最新的分子遗传分析方法可以更好地了解身材矮小的遗传形式的发病机理。最近发现的这种病理机制之一是RPL13基因的单等位基因突变,导致Isidor-Toutain型脊柱表皮干发育不良(SEDM)的发展。这种形式的特征性表型特征是正常出生长度,出生后早期生长不足,桔梗,股骨近端骨phy改变,Coxavara,Genuvarum.这项研究介绍了俄罗斯联邦首例由RPL13基因突变引起的SEMD患者的临床和放射学特征。
    Growth retardation for more than 2 SD below the average population or presumed familial target height is classified as a short stature and may be a clinical manifestation of a large number of disorders. The use of the latest methods of molecular genetic analysis in recent years has allowed for a better understanding of the pathogenesis of inherited forms of a short stature. One of the recently discovered mechanisms of this pathology was monoallelic mutations in RPL13 gene, leading to the development of Isidor-Toutain type spondyloepimetaphyseal dysplasia (SEDM). Characteristic phenotypic features for this form are normal birth length, early postnatal growth deficiency, platyspondyly, proximal femoral epiphyseal changes, coxa vara, genu varum. This study presents the clinical and radiological characteristics of the first patient in the Russian -Federation with SEMD caused by a mutation in RPL13 gene.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    抗菌肽(AMP),以它们的阳离子性质和两亲性为特征,在抑制微生物的生物活性中起着举足轻重的作用。目前,核糖体蛋白家族中只有一小部分的抗菌潜力被探索,尽管其广泛的成员和相似的AMP。在本文中,我们证明了文昌鱼RPL17(BjRPL17)不仅在细菌刺激下表现出上调的表达,而且还通过联合作用机制(包括与细胞表面分子LPS的相互作用)对革兰氏阴性和阳性细菌具有杀菌能力。LTA,PGN,细胞膜完整性的破坏,促进膜去极化,和诱导细胞内ROS产生。此外,来自BjRPL17的残基127-141的肽(称为BjRPL17-1)通过与全长蛋白相同的机制对金黄色葡萄球菌及其耐甲氧西林菌株显示出抗菌活性。此外,rpl17基因在后生动物中高度保守,提示它可能在不同动物的抗菌防御系统中发挥普遍作用。重要的是,BjRPL17和肽BjRPL17-1均未表现出对哺乳动物细胞的毒性,从而为基于这些发现设计新型AMP试剂提供了前景。总的来说,我们的结果将RPL17确立为具有显著进化保守性的AMP的新成员。
    Antimicrobial peptides (AMPs), characterized by their cationic nature and amphiphilic properties, play a pivotal role in inhibiting the biological activity of microbes. Currently, only a fraction of the antimicrobial potential within the ribosomal protein family has been explored, despite its extensive membership and resemblance to AMPs. Herein we demonstrated that amphioxus RPL17 (BjRPL17) exhibited not only upregulated expression upon bacterial stimulation but also possessed bactericidal capabilities against both Gram-negative and -positive bacteria through combined action mechanisms including interaction with cell surface molecules LPS, LTA, and PGN, disruption of cell membrane integrity, promotion of membrane depolarization, and induction of intracellular ROS production. Furthermore, a peptide derived from residues 127-141 of BjRPL17 (termed BjRPL17-1) showed antibacterial activity against Staphylococcus aureus and its methicillin-resistant strain via the same mechanism observed for the full-length protein. Additionally, the rpl17 gene was highly conserved in Metazoa, hinting it may play a universal role in the antibacterial defense system in different animals. Importantly, neither BjRPL17 nor peptide BjRPL17-1 exhibited toxicity towards mammalian cells thereby offering prospects for designing novel AMP agents based on these findings. Collectively, our results establish RPL17 as a novel member of AMPs with remarkable evolutionary conservation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    核糖体不是完全的球形机器。相反,它们包括突出的结构突起和无数的触手状突起,通常由核糖体RNA扩增片段和核糖体蛋白的N或C末端延伸组成。这在高等真核核糖体中更为明显。最典型的突起之一,存在于生命三个领域的小核糖体亚基中,就是所谓的喙,这与核糖体活动的功能和调节有关。在进化过程中,喙已经从细菌中的全核糖体RNA结构(16SrRNA中的螺旋H33)转变过来,由三个核糖体蛋白形成的排列,eS10、eS12和eS31,以及真核生物中较小的h33核糖体RNA。在这次审查中,我们描述了真核生物喙的不同结构和功能特性。我们讨论了关于其组成和功能意义的最新技术,包括其他显然与翻译无关的过程,以及它在酵母和人类细胞中组装的动力学。此外,我们概述了目前关于喙成分在人类疾病中的相关性的观点,尤其是核糖体病和癌症。
    Ribosomes are not totally globular machines. Instead, they comprise prominent structural protrusions and a myriad of tentacle-like projections, which are frequently made up of ribosomal RNA expansion segments and N- or C-terminal extensions of ribosomal proteins. This is more evident in higher eukaryotic ribosomes. One of the most characteristic protrusions, present in small ribosomal subunits in all three domains of life, is the so-called beak, which is relevant for the function and regulation of the ribosome\'s activities. During evolution, the beak has transitioned from an all ribosomal RNA structure (helix h33 in 16S rRNA) in bacteria, to an arrangement formed by three ribosomal proteins, eS10, eS12 and eS31, and a smaller h33 ribosomal RNA in eukaryotes. In this review, we describe the different structural and functional properties of the eukaryotic beak. We discuss the state-of-the-art concerning its composition and functional significance, including other processes apparently not related to translation, and the dynamics of its assembly in yeast and human cells. Moreover, we outline the current view about the relevance of the beak\'s components in human diseases, especially in ribosomopathies and cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号