reverse transpiration

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    植物叶片温度可以不同于环境空气温度。气体混合物中的温度梯度引起称为热扩散的现象,它除了普通扩散之外还起作用。虽然蒸腾通常被理解为仅由水蒸气沿浓度梯度的普通扩散驱动,我们考虑了热扩散对蒸腾作用的影响。我们开发了一个新的建模框架,介绍了热扩散对蒸腾速率的影响,E.通过应用这一框架,我们量化了一组生理和环境条件下归因于热扩散的E的比例,在很宽的范围内变化。当叶片与空气的温度差与边界层上相对较小的水蒸气浓度差重合时,发现热扩散是最重要的(在某些情况下>E的30%);与气孔导度相比,边界层导度较大;或蒸腾速率相对较低。热扩散也改变了反向蒸腾开始所需的条件,以及这种水蒸气吸收的速率。
    Plant leaf temperatures can differ from ambient air temperatures. A temperature gradient in a gas mixture gives rise to a phenomenon known as thermodiffusion, which operates in addition to ordinary diffusion. Whilst transpiration is generally understood to be driven solely by the ordinary diffusion of water vapour along a concentration gradient, we consider the implications of thermodiffusion for transpiration. We develop a new modelling framework that introduces the effects of thermodiffusion on the transpiration rate, E. By applying this framework, we quantify the proportion of E attributable to thermodiffusion for a set of physiological and environmental conditions, varied over a wide range. Thermodiffusion is found to be most significant (in some cases > 30% of E) when a leaf-to-air temperature difference coincides with a relatively small water vapour concentration difference across the boundary layer; a boundary layer conductance that is large as compared to the stomatal conductance; or a relatively low transpiration rate. Thermodiffusion also alters the conditions required for the onset of reverse transpiration, and the rate at which this water vapour uptake occurs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号