retrotrapezoid nucleus

后梯形核
  • 文章类型: Journal Article
    PHOX2B是中枢神经系统和周围神经系统中不同类型神经元发育所必需的转录因子。PHOX2B编码区的杂合突变是先天性中枢通气不足综合征(CCHS)的发生原因,一种罕见的神经系统疾病,其特征是化学敏感性不足和危及生命的睡眠相关通气不足。动物研究表明,化学反射缺陷部分是由后梯形核(RTN)中表达PHOX2B的神经元的不适当发育或功能引起的,CO2化学敏感性的中心中心。尽管PHOX2B在啮齿动物发育过程中的功能已经确立,它在成人呼吸网络中的作用仍然未知。在这项研究中,我们调查了RTN中表达化学敏感性神经介质蛋白B(NMB)的神经元中PHOX2B表达的减少是否改变了呼吸功能。在局部RTN注射表达短发夹RNA(shRNA)靶向Phox2bmRNA的慢病毒载体四周后,与幼稚大鼠和注射非靶shRNA的大鼠相比,在Nmb神经元中观察到PHOX2B表达降低.PHOX2B敲除不影响室内空气或缺氧下的呼吸,但在高碳酸血症期间通气明显受损。PHOX2B敲低不会改变Nmb表达,但与RTN中两个CO2/pH传感器Task2和Gpr4的表达降低有关。我们得出的结论是,成人大脑中的PHOX2B在CO2化学接受中具有重要作用,并且在发育期之后,CCHS中PHOX2B的表达减少可能导致中枢化学反射功能受损。
    PHOX2B is a transcription factor essential for the development of different classes of neurons in the central and peripheral nervous system. Heterozygous mutations in the PHOX2B coding region are responsible for the occurrence of Congenital Central Hypoventilation Syndrome (CCHS), a rare neurological disorder characterised by inadequate chemosensitivity and life-threatening sleep-related hypoventilation. Animal studies suggest that chemoreflex defects are caused in part by the improper development or function of PHOX2B expressing neurons in the retrotrapezoid nucleus (RTN), a central hub for CO2 chemosensitivity. Although the function of PHOX2B in rodents during development is well established, its role in the adult respiratory network remains unknown. In this study, we investigated whether reduction in PHOX2B expression in chemosensitive neuromedin-B (NMB) expressing neurons in the RTN altered respiratory function. Four weeks following local RTN injection of a lentiviral vector expressing the short hairpin RNA (shRNA) targeting Phox2b mRNA, a reduction of PHOX2B expression was observed in Nmb neurons compared to both naive rats and rats injected with the non-target shRNA. PHOX2B knockdown did not affect breathing in room air or under hypoxia, but ventilation was significantly impaired during hypercapnia. PHOX2B knockdown did not alter Nmb expression but it was associated with reduced expression of both Task2 and Gpr4, two CO2/pH sensors in the RTN. We conclude that PHOX2B in the adult brain has an important role in CO2 chemoreception and reduced PHOX2B expression in CCHS beyond the developmental period may contribute to the impaired central chemoreflex function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:中枢CO2化学反射是呼吸控制网络的重要组成部分,在休息条件下提供兴奋性驱动,并挑战血气稳态。后梯形核是CO2化学敏感性的关键枢纽;它的消融或抑制作用减弱了CO2化学挠曲并减少了呼吸。类似的表型表征某些低通气综合征,提示这些疾病中潜在的后梯形核损伤。孕酮刺激呼吸和CO2化学反应。然而,其作用机制和作用部位尚不清楚,在患者和动物模型中实验性使用合成孕激素时出现混合的呼吸结局.
    方法:我们研究了孕激素药物的急性或慢性给药,依托孕孕酮,皂草素毒素可以挽救后梯形核选择性损伤后的呼吸化学反射。成年雌性SpragueDawley大鼠根据存活的化学敏感神经元数量确定的病变大小进行分组,通过全身体积描记术测量通气反应。
    结果:对高碳酸血症(而非缺氧)的通气反应以损伤依赖性方式受损。慢性依托孕酮治疗选择性改善中度病变大鼠的CO2化学敏感性,表明依托孕烯诱导的CO2化学反射恢复需要残留数量的化学敏感神经元。
    结论:这项研究为在中枢低通气条件下使用孕激素作为呼吸兴奋剂提供了新的证据,并为评估孕激素在呼吸网络中的作用机制提供了一个新的可测试模型。
    The central CO2 chemoreflex is a vital component of respiratory control networks, providing excitatory drive during resting conditions and challenges to blood gas homeostasis. The retrotrapezoid nucleus is a crucial hub for CO2 chemosensitivity; its ablation or inhibition attenuates CO2 chemoreflexes and diminishes restful breathing. Similar phenotypes characterize certain hypoventilation syndromes, suggesting underlying retrotrapezoid nucleus impairment in these disorders. Progesterone stimulates restful breathing and CO2 chemoreflexes. However, its mechanisms and sites of actions remain unknown and the experimental use of synthetic progestins in patients and animal models have been met with mixed respiratory outcomes.
    We investigated whether acute or chronic administration of the progestinic drug, etonogestrel, could rescue respiratory chemoreflexes following selective lesion of the retrotrapezoid nucleus with saporin toxin. Adult female Sprague Dawley rats were grouped based on lesion size determined by the number of surviving chemosensitive neurons, and ventilatory responses were measured by whole body plethysmography.
    Ventilatory responses to hypercapnia (but not hypoxia) were compromised in a lesion-dependent manner. Chronic etonogestrel treatment improved CO2 chemosensitivity selectively in rats with moderate lesion, suggesting that a residual number of chemosensitive neurons are required for etonogestrel-induced CO2 chemoreflex recovery.
    This study provides new evidence for the use of progestins as respiratory stimulants under conditions of central hypoventilation and provides a new testable model for assessing the mechanism of action of progestins in the respiratory network.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    已经提出了至少四种机制来阐明梯形(RTN)区域中的神经元如何感知CO2/H的变化以调节呼吸(即,作为呼吸化学传感器)。这些机制包括:(1)由TASK-2和GPR4介导的对H+的内在神经元敏感性;(2)CO2反应性星形胶质细胞对RTN神经元的旁分泌激活(通过嘌呤能机制);(3)增强的兴奋性突触输入或解除抑制;和(4)CO2诱导的血管收缩。虽然血流会影响组织的CO2/H+水平,对于中央CO2化学敏感区血管紧张度的控制如何有助于呼吸输出量的认识有限.在这次审查中,我们关注最近的证据,即在RTN神经元附近的腹侧面旁区域,CO2/H+诱导的嘌呤能依赖性血管收缩支持呼吸化学接受.这种机制似乎是腹侧面旁区域独有的,与其他大脑区域相反,包括髓质化学传感器区域,其中CO2/H+引起血管舒张。我们推测这种机制有助于维持RTN神经元附近的CO2/H+水平,从而保持呼吸的动力。重要的后续步骤包括确定CO2/H+血管反应性的破坏是否有助于或可以作为改善疾病状态下呼吸问题的目标。比如帕金森病。
    At least four mechanisms have been proposed to elucidate how neurons in the retrotrapezoid (RTN) region sense changes in CO2 /H+ to regulate breathing (i.e., function as respiratory chemosensors). These mechanisms include: (1) intrinsic neuronal sensitivity to H+ mediated by TASK-2 and GPR4; (2) paracrine activation of RTN neurons by CO2 -responsive astrocytes (via a purinergic mechanism); (3) enhanced excitatory synaptic input or disinhibition; and (4) CO2 -induced vascular contraction. Although blood flow can influence tissue CO2 /H+ levels, there is limited understanding of how control of vascular tone in central CO2 chemosensitive regions might contribute to respiratory output. In this review, we focus on recent evidence that CO2 /H+ -induced purinergic-dependent vasoconstriction in the ventral parafacial region near RTN neurons supports respiratory chemoreception. This mechanism appears to be unique to the ventral parafacial region and opposite to other brain regions, including medullary chemosensor regions, where CO2 /H+ elicits vasodilatation. We speculate that this mechanism helps to maintain CO2 /H+ levels in the vicinity of RTN neurons, thereby maintaining the drive to breathe. Important next steps include determining whether disruption of CO2 /H+ vascular reactivity contributes to or can be targeted to improve breathing problems in disease states, such as Parkinson\'s disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:在哺乳动物中,在健康和疾病条件下,中枢化学感受在调节呼吸功能中起着至关重要的作用。最近,高水平的超氧阴离子(O2。-)在后梯形核(RTN)中,大脑主要的化学感受器区域,在啮齿动物中发现了增强的中央化学接受。有趣的是,超氧化物歧化酶2(SOD2)表达缺乏,一种关键的抗氧化酶,与几种疾病的发展/进展有关。尽管,SOD2对O2的贡献。-中枢化学感受器功能的调节是未知的。因此,我们试图确定SOD2表达部分缺失对i)O2的影响。-RTN中的积累,ii)中央通气化学反射功能,和iii)呼吸紊乱。最后,我们研究SOD2在健康小鼠RTN中的细胞定位。
    方法:通过全身体积描记术在自由移动的杂合子SOD2敲除小鼠(SOD2+/-小鼠)和年龄匹配的对照野生型(WT)小鼠中评估中枢化学反射驱动和呼吸功能。O2.-在RTN脑干切片和大脑分离的线粒体中确定水平,免疫印迹法测定SOD2蛋白表达和组织定位,RNAseq和免疫荧光染色,分别。
    结果:我们的结果表明,SOD2+/-小鼠表现出SOD2水平降低和高O2。-与WT相比,RTN内的形成和线粒体功能障碍。此外,SOD2/-小鼠对高碳酸血症表现出增强的通气反应,并表现出明显的呼吸模式改变的迹象。两者,RNAseq分析和免疫荧光共定位研究表明,SOD2的表达仅限于RTN星形胶质细胞,而不限于RTN化学感受器神经元。最后,我们发现,与WT小鼠的RTN星形胶质细胞相比,SOD2+/-小鼠显示出RTN星形胶质细胞形态的改变.
    这些发现为SOD2在调节O2中的作用提供了第一个证据。-RTN中的水平及其对中枢化学反射功能调节的潜在贡献。我们的结果表明,脑中SOD2表达的减少可能有助于增加O2。-RTN中的水平是中枢化学反射驱动的慢性激增和改变的呼吸模式的发展/维持的结果。总的来说,SOD2的失调和由此导致的O2增加。-脑干呼吸区域中的水平可以破坏正常的呼吸控制机制,并导致在以高氧化应激为特征的某些疾病中看到的呼吸功能障碍。
    OBJECTIVE: In mammals, central chemoreception plays a crucial role in the regulation of breathing function in both health and disease conditions. Recently, a correlation between high levels of superoxide anion (O2.-) in the Retrotrapezoid nucleus (RTN), a main brain chemoreceptor area, and enhanced central chemoreception has been found in rodents. Interestingly, deficiency in superoxide dismutase 2 (SOD2) expression, a pivotal antioxidant enzyme, has been linked to the development/progression of several diseases. Despite, the contribution of SOD2 on O2.- regulation on central chemoreceptor function is unknown. Accordingly, we sought to determine the impact of partial deletion of SOD2 expression on i) O2.-accumulation in the RTN, ii) central ventilatory chemoreflex function, and iii) disordered-breathing. Finally, we study cellular localization of SOD2 in the RTN of healthy mice.
    METHODS: Central chemoreflex drive and breathing function were assessed in freely moving heterozygous SOD2 knockout mice (SOD2+/- mice) and age-matched control wild type (WT) mice by whole-body plethysmography. O2.- levels were determined in RTN brainstem sections and brain isolated mitochondria, while SOD2 protein expression and tissue localization were determined by immunoblot, RNAseq and immunofluorescent staining, respectively.
    RESULTS: Our results showed that SOD2+/- mice displayed reductions in SOD2 levels and high O2.- formation and mitochondrial dysfunction within the RTN compared to WT. Additionally, SOD2+/- mice displayed a heightened ventilatory response to hypercapnia and exhibited overt signs of altered breathing patterns. Both, RNAseq analysis and immunofluorescence co-localization studies showed that SOD2 expression was confined to RTN astrocytes but not to RTN chemoreceptor neurons. Finally, we found that SOD2+/- mice displayed alterations in RTN astrocyte morphology compared to RTN astrocytes from WT mice.
    UNASSIGNED: These findings provide first evidence of the role of SOD2 in the regulation of O2.- levels in the RTN and its potential contribution on the regulation of central chemoreflex function. Our results suggest that reductions in the expression of SOD2 in the brain may contribute to increase O2.- levels in the RTN being the outcome a chronic surge in central chemoreflex drive and the development/maintenance of altered breathing patterns. Overall, dysregulation of SOD2 and the resulting increase in O2.- levels in brainstem respiratory areas can disrupt normal respiratory control mechanisms and contribute to breathing dysfunction seen in certain disease conditions characterized by high oxidative stress.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    呼吸由位于脑桥-髓质区域中的各种类型的神经元调节。Kölliker-Fuse(KF)/A7去甲肾上腺素能神经元通过影响呼吸输出在调节吸气周期中起作用。这些神经元相互联系,也可能投射到脑干和脊髓,可能参与调节吸气后阶段。在本研究中,我们假设面旁(pF)神经元,与源自KF/A7区域的肾上腺素能机制相结合,可以为呼吸调节提供神经生理学基础。我们使用尿烷麻醉进行了实验,迷走神经切断术,人工通风的雄性Wistar大鼠.向KF/A7区域注射L-谷氨酸导致吸气活性的抑制,和长时间的高振幅生殖舌体活动(GGEMG)。pF区域中α1肾上腺素能受体(α1-AR)或离子型谷氨酸能受体的阻断会降低GGEMG的活性,而不会影响吸气停止。相比之下,pF区域中α2-AR的阻断延长了GG活性的持续时间。值得注意的是,KF/A7刺激诱导的吸气和GGEMG活动被Bötzinger复合物(BötC)中谷氨酸能受体的双侧阻断完全阻断。虽然我们的研究发现pF水平的α1和α2肾上腺素能受体在调节对KF/A7刺激的呼吸反应中的作用有限,很明显BötC神经元负责KF/A7刺激诱导的呼吸效应。
    Respiration is regulated by various types of neurons located in the pontine-medullary regions. The Kölliker-Fuse (KF)/A7 noradrenergic neurons play a role in modulating the inspiratory cycle by influencing the respiratory output. These neurons are interconnected and may also project to brainstem and spinal cord, potentially involved in regulating the post-inspiratory phase. In the present study, we hypothesize that the parafacial (pF) neurons, in conjunction with adrenergic mechanisms originating from the KF/A7 region, may provide the neurophysiological basis for breathing modulation. We conducted experiments using urethane-anesthetized, vagotomized, and artificially ventilated male Wistar rats. Injection of L-glutamate into the KF/A7 region resulted in inhibition of inspiratory activity, and a prolonged and high-amplitude genioglossal activity (GGEMG). Blockade of the α1 adrenergic receptors (α1-AR) or the ionotropic glutamatergic receptors in the pF region decrease the activity of the GGEMG without affecting inspiratory cessation. In contrast, blockade of α2-AR in the pF region extended the duration of GG activity. Notably, the inspiratory and GGEMG activities induced by KF/A7 stimulation were completely blocked by bilateral blockade of glutamatergic receptors in the Bötzinger complex (BötC). While our study found a limited role for α1 and α2 adrenergic receptors at the pF level in modulating the breathing response to KF/A7 stimulation, it became evident that BötC neurons are responsible for the respiratory effects induced by KF/A7 stimulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Preprint
    呼吸化学敏感性是大脑感知CO2(PCO2)血液分压变化的重要机制。有人提出,各个脑干区域的特殊神经元(和星形胶质细胞)作为啮齿动物的CO2中枢呼吸化学传感器起着关键作用。虽然常见的猿猴(Callithrixjacchus),新世界非人灵长类动物,对升高的吸入二氧化碳表现出与啮齿动物相似的呼吸反应,小鼠大脑中的化学敏感区尚未确定。这里,我们使用c-fos免疫染色来鉴定普通猴的全脑CO2激活脑区.此外,我们基于CO2诱导的c-fos与Phox2b的免疫反应性的共定位,绘制了后梯形核(RTN)和raphé核在the头脑干中的位置,和TPH免疫染色,分别。我们的数据还表明,类似于啮齿动物,MarmosetRTN星形胶质细胞表达Phox2b,并具有复杂的过程,在延髓的腹面形成网状结构。我们的数据强调了常见的and猴和啮齿动物脑干中的一些细胞和结构区域相似性。
    Respiratory chemosensitivity is an important mechanism by which the brain senses changes in blood partial pressure of CO2 (PCO2). It is proposed that special neurons (and astrocytes) in various brainstem regions play key roles as CO2 central respiratory chemosensors in rodents. Although common marmosets (Callithrix jacchus), New-World non-human primates, show similar respiratory responses to elevated inspired CO2 as rodents, the chemosensitive regions in marmoset brain have not been defined yet. Here, we used c-fos immunostainings to identify brain-wide CO2-activated brain regions in common marmosets. In addition, we mapped the location of the retrotrapezoid nucleus (RTN) and raphé nuclei in the marmoset brainstem based on colocalization of CO2-induced c-fos immunoreactivity with Phox2b, and TPH immunostaining, respectively. Our data also indicated that, similar to rodents, marmoset RTN astrocytes express Phox2b and have complex processes that create a meshwork structure at the ventral surface of medulla. Our data highlight some cellular and structural regional similarities in brainstem of the common marmosets and rodents.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    已发现中枢瘦素信号系统促进呼吸,并与肥胖相关的通气不足有关。孤束核(NTS)和后梯形核(RTN)中瘦素信号的激活增强了呼吸驱动。在这项研究中,我们调查了髓质瘦素信号如何导致通气不足,以及NTS和RTN中SOCS3的缺失是否可以减轻饮食诱导的肥胖(DIO)雄性小鼠的通气不足.我们的发现表明,与瘦对照小鼠相比,DIO小鼠中CO2激活的NTS神经元数量减少,酸感应离子通道下调。此外,NTS瘦素信号被破坏,正如DIO小鼠中磷酸化STAT3的下调和SOCS3的上调所证明的那样。重要的是,在NTS和RTN中删除SOCS3可显着改善DIO小鼠的高碳酸血症通气反应减弱。总之,我们的研究表明,受损的髓质瘦素信号有助于肥胖相关的低通气,抑制NTS和RTN中上调的SOCS3可以缓解这种情况。
    The central leptin signaling system has been found to facilitate breathing and is linked to obesity-related hypoventilation. Activation of leptin signaling in the nucleus tractus solitarii (NTS) and retrotrapezoid nucleus (RTN) enhances respiratory drive. In this study, we investigated how medullary leptin signaling contributes to hypoventilation and whether respective deletion of SOCS3 in the NTS and RTN could mitigate hypoventilation in diet-induced obesity (DIO) male mice. Our findings revealed a decrease in the number of CO2-activated NTS neurons and downregulation of acid-sensing ion channels in DIO mice compared to lean control mice. Moreover, NTS leptin signaling was disrupted, as evidenced by the downregulation of phosphorylated STAT3 and the upregulation of SOCS3 in DIO mice. Importantly, deleting SOCS3 in the NTS and RTN significantly improved the diminished hypercapnic ventilatory response in DIO mice. In conclusion, our study suggests that disrupted medullary leptin signaling contributes to obesity-related hypoventilation, and inhibiting the upregulated SOCS3 in the NTS and RTN can alleviate this condition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    当前的呼吸CO2化学敏感性模型集中在位于延髓后梯形核(RTN)中的特定神经元群的功能上。然而,有大量证据表明,其他脑干区域存在化学敏感神经元,包括延髓的节奏产生区域-preBötzinger复合体(preBötC)。也有证据表明星形胶质细胞,非神经元脑细胞,有助于中央CO2化学敏感性。在这项研究中,我们重新评估了RTN神经元的相对贡献,前BötC星形胶质细胞,和颈动脉体化学感受器在介导实验动物(成年实验室大鼠)对CO2的呼吸反应中。为了通过胞吐释放递质来阻断星形胶质信号,将preBötC星形胶质细胞靶向表达破伤风毒素轻链(TeLC)。TeLC在前BötC星形胶质细胞中的双边表达与清醒和麻醉动物对CO2的呼吸反应的20%和30%减少有关,分别。颈动脉体去神经使CO2呼吸反应降低了约25%。通过应用氯氮平-N-氧化物,双侧抑制被转导以表达由设计药物(DREADDGi)专门激活的Gi偶联设计受体的RTN神经元,使清醒和麻醉大鼠的CO2反应降低了约20%和约40%,分别。前BötC中星形胶质细胞信号的联合阻断,抑制RTN神经元和颈动脉体去神经使CO2诱导的呼吸反应降低约70%。这些数据进一步支持以下假设:CO2敏感的呼吸驱动需要来自外周化学感受器和若干中枢化学感受器位点的输入。在preBötC级别,星形胶质细胞调节响应CO2的呼吸网络的活动,通过中继化学感应信息(即它们充当CO2传感器)或通过增强preBötC网络对化学感应输入的兴奋性。关键点:这项研究重新评估了颈动脉体所扮演的角色,前BötC的后梯形核(RTN)和星形胶质细胞介导CO2敏感的呼吸驱动。获得的数据表明,preBötC星形胶质信号的破坏,阻断来自外周化学感受器的输入或抑制RTN神经元类似地降低了对高碳酸血症的呼吸反应。这些数据为以下假设提供了进一步的支持:CO2敏感的呼吸驱动是由外周化学感受器和几个中央化学感受器位点的输入介导的。
    Current models of respiratory CO2 chemosensitivity are centred around the function of a specific population of neurons residing in the medullary retrotrapezoid nucleus (RTN). However, there is significant evidence suggesting that chemosensitive neurons exist in other brainstem areas, including the rhythm-generating region of the medulla oblongata - the preBötzinger complex (preBötC). There is also evidence that astrocytes, non-neuronal brain cells, contribute to central CO2 chemosensitivity. In this study, we reevaluated the relative contributions of the RTN neurons, the preBötC astrocytes, and the carotid body chemoreceptors in mediating the respiratory responses to CO2 in experimental animals (adult laboratory rats). To block astroglial signalling via exocytotic release of transmitters, preBötC astrocytes were targeted to express the tetanus toxin light chain (TeLC). Bilateral expression of TeLC in preBötC astrocytes was associated with ∼20% and ∼30% reduction of the respiratory response to CO2 in conscious and anaesthetized animals, respectively. Carotid body denervation reduced the CO2 respiratory response by ∼25%. Bilateral inhibition of RTN neurons transduced to express Gi-coupled designer receptors exclusively activated by designer drug (DREADDGi ) by application of clozapine-N-oxide reduced the CO2 response by ∼20% and ∼40% in conscious and anaesthetized rats, respectively. Combined blockade of astroglial signalling in the preBötC, inhibition of RTN neurons and carotid body denervation reduced the CO2 -induced respiratory response by ∼70%. These data further support the hypothesis that the CO2 -sensitive drive to breathe requires inputs from the peripheral chemoreceptors and several central chemoreceptor sites. At the preBötC level, astrocytes modulate the activity of the respiratory network in response to CO2 , either by relaying chemosensory information (i.e. they act as CO2  sensors) or by enhancing the preBötC network excitability to chemosensory inputs. KEY POINTS: This study reevaluated the roles played by the carotid bodies, neurons of the retrotrapezoid nucleus (RTN) and astrocytes of the preBötC in mediating the CO2 -sensitive drive to breathe. The data obtained show that disruption of preBötC astroglial signalling, blockade of inputs from the peripheral chemoreceptors or inhibition of RTN neurons similarly reduce the respiratory response to hypercapnia. These data provide further support for the hypothesis that the CO2 -sensitive drive to breathe is mediated by the inputs from the peripheral chemoreceptors and several central chemoreceptor sites.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    转录因子Phox2b的突变导致先天性中枢通气不足综合征(CCHS)。该综合征的特征是通气不足和无法调节呼吸以维持充足的O2和CO2水平。CCHS影响呼吸控制的机制尚未完全了解,甚至更少知道非聚丙氨酸重复扩增突变(NPARM)形式的影响。我们的目标是研究NPRMPhox2b突变影响(a)呼吸节律的程度;(b)对高碳酸血症(HCVR)和缺氧(HVR)的通气反应;(c)小鼠中化学敏感神经元的数量。我们使用了携带有条件的Phox2bΔ8突变的转基因小鼠系(在具有NPARMCCHS的人类中发现的相同)。我们将它们与Atoh1cre小鼠杂交,以在与呼吸功能和中枢化学反射控制有关的区域引入突变。在新生儿和成年期间通过体积描记器测量通气。在房间的空气中,新生儿和成人的突变对基础通气没有很大影响.然而,Phox2bΔ8,Atoh1cre增加了成年人的呼吸不规则性。新生儿HVR和HCVR受损。HVR,但不是HCVR,在成年人中仍然部分受损。该突变减少了高碳酸血症引起的腹侧面旁区域(也称为后梯形核[RTN]区域)内表达Phox2b/TH的神经元的数量以及fos激活细胞的数量。我们的数据表明,在Atoh1表达细胞中的Phox2bΔ8突变损害了RTN神经元,以及缺氧和高碳酸血症下的化学反射,特别是在生命早期。这项研究为CCHS神经病理学的NPARM形式相关机制提供了新的证据。
    Mutations in the transcription factor Phox2b cause congenital central hypoventilation syndrome (CCHS). The syndrome is characterized by hypoventilation and inability to regulate breathing to maintain adequate O2 and CO2 levels. The mechanism by which CCHS impact respiratory control is incompletely understood, and even less is known about the impact of the non-polyalanine repeat expansion mutations (NPARM) form. Our goal was to investigate the extent by which NPARM Phox2b mutation affect (a) respiratory rhythm; (b) ventilatory responses to hypercapnia (HCVR) and hypoxia (HVR); and (c) number of chemosensitive neurons in mice. We used a transgenic mouse line carrying a conditional Phox2bΔ8 mutation (same found in humans with NPARM CCHS). We crossed them with Atoh1cre mice to introduce mutation in regions involved with respiratory function and central chemoreflex control. Ventilation was measured by plethysmograph during neonatal and adult life. In room air, mutation in neonates and adult did not greatly impact basal ventilation. However, Phox2bΔ8, Atoh1cre increased breath irregularity in adults. The HVR and HCVR were impaired in neonates. The HVR, but not HCVR, was still partially compromised in adults. The mutation reduced the number of Phox2b+/TH--expressing neurons as well as the number of fos-activated cells within the ventral parafacial region (also named retrotrapezoid nucleus [RTN] region) induced by hypercapnia. Our data indicates that Phox2bΔ8 mutation in Atoh1-expressing cells impaired RTN neurons, as well as chemoreflex under hypoxia and hypercapnia specially early in life. This study provided new evidence for mechanisms related to NPARM form of CCHS neuropathology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号