replication fork

复制叉
  • 文章类型: Journal Article
    DNA中碱基的改变构成基因组不稳定性的主要来源。据信碱基改变引发碱基切除修复(BER),产生干扰DNA复制的DNA修复中间体。这里,我们显示基因组尿嘧啶,一种常见的碱基改变,诱导DNA复制应激(RS)而不被BER处理。在没有尿嘧啶DNA糖基化酶(UNG)的情况下,基因组尿嘧啶积累到高水平,DNA复制叉慢下来,PrimPol介导的再灌注增强,在新生DNA中产生单链缺口。UNG缺陷细胞中的ATR抑制阻断尿嘧啶诱导的间隙的修复,增加复制叉崩溃和细胞死亡。值得注意的是,一部分癌细胞上调UNG2以抑制基因组尿嘧啶并限制RS,这些癌细胞对ATR抑制剂和增加基因组尿嘧啶的药物共同治疗过敏。这些结果揭示了未加工的基因组尿嘧啶作为RS的意外来源和癌细胞的可靶向脆弱性。
    Alterations of bases in DNA constitute a major source of genomic instability. It is believed that base alterations trigger base excision repair (BER), generating DNA repair intermediates interfering with DNA replication. Here, we show that genomic uracil, a common type of base alteration, induces DNA replication stress (RS) without being processed by BER. In the absence of uracil DNA glycosylase (UNG), genomic uracil accumulates to high levels, DNA replication forks slow down, and PrimPol-mediated repriming is enhanced, generating single-stranded gaps in nascent DNA. ATR inhibition in UNG-deficient cells blocks the repair of uracil-induced gaps, increasing replication fork collapse and cell death. Notably, a subset of cancer cells upregulates UNG2 to suppress genomic uracil and limit RS, and these cancer cells are hypersensitive to co-treatment with ATR inhibitors and drugs increasing genomic uracil. These results reveal unprocessed genomic uracil as an unexpected source of RS and a targetable vulnerability of cancer cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    “BRCAness”定义了由于BRCA1或BRCA2突变而导致同源重组(HR)缺陷的癌症。这些突变赋予PARP1/2抑制剂的合成致死性。染色质调节剂PTIP促进“BRCAness”细胞中停滞的复制叉降解,但是PTIP调节停滞复制叉稳定性的潜在机制尚不清楚。这里,我们进行了一系列体外分析,以剖析UFMylation在BRCA1缺陷细胞中调节叉稳定的功能。通过变性免疫共沉淀,我们首先发现复制胁迫可以诱导PTIPUFM1化。有趣的是,这种翻译后修饰促进了BRCA1缺陷细胞中停滞复制叉处新生DNA的末端切除和降解.通过细胞活力测定,我们发现,与靶向siRNA的阴性对照BRCA1缺陷细胞相比,PTIP缺失和UFL1缺失的BRCA1敲低细胞对PARP抑制剂的敏感性较低.这些结果确定了一种新的机制,通过该机制,PTIPUFM化赋予BRCA1缺陷型细胞的化学抗性。
    Homologous-recombination deficiency due to breast cancer 1/2 (BRCA1/2) mutations or mimicking BRCA1/2 mutations confer synthetic lethality with poly-(ADP)-ribose polymerase 1/2 inhibitors. The chromatin regulator Pax2 transactivation domain interacting protein (PTIP) promotes stalled replication fork degradation in BRCA1-deficient cells, but the underlying mechanism by which PTIP regulates stalled replication fork stability is unclear. Here, we performed a series of in vitro analyses to dissect the function of UFMylation in regulating fork stabilization in BRCA1-deficient cells. By denaturing co-immunoprecipitation, we first found that replication stress can induce PTIP UFMylation. Interestingly, this post-translational modification promotes end resection and degradation of nascent DNA at stalled replication forks in BRCA1-deficient cells. By cell viability assay, we found that PTIP-depleted and UFL1-depleted BRCA1 knockdown cells are less sensitive to poly-(ADP)-ribose polymerase inhibitors than the siRNA targeting negative control BRCA1-deficient cells. These results identify a new mechanism by which PTIP UFMylation confers chemoresistance in BRCA1-deficient cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    DNA复制是确保细胞分裂过程中遗传信息转移的基本细胞过程。基因组复制发生在S期,需要在复制叉处动态且高度协调地募集多种蛋白质。各种基因毒性应激导致叉子不稳定和崩溃,因此需要DNA修复途径。通过鉴定与这些事件有关的多种蛋白质相互作用,我们可以更好地掌握促进DNA复制和修复的复杂和动态分子机制。邻近依赖性生物素鉴定(BioID)用于鉴定与四种核心复制成分中的17种蛋白质的关联。即解绕DNA的CDC45/MCM2-7/GINS(CMG)解旋酶,DNA聚合酶,复制蛋白A亚基,和组蛋白伴侣需要拆卸和重新组装染色质。我们进一步研究了基因毒性应激对这些相互作用的影响。该分析揭示了广泛的邻近关联网络,在羟基脲存在下进一步调节了108个核蛋白;富集45个,耗尽63个。有趣的是,羟基脲处理还导致了与11个相互作用者的关联的重新分配,这意味着当压力时,复制体会动态重组。分析确定了几种特征不佳的蛋白质,从而在细胞对DNA复制停滞的反应中发现新的推定参与者。它还提供了一个新的全面的蛋白质组学框架,以了解细胞在DNA复制过程中如何应对障碍。
    DNA replication is a fundamental cellular process that ensures the transfer of genetic information during cell division. Genome duplication takes place in S phase and requires a dynamic and highly coordinated recruitment of multiple proteins at replication forks. Various genotoxic stressors lead to fork instability and collapse, hence the need for DNA repair pathways. By identifying the multitude of protein interactions implicated in those events, we can better grasp the complex and dynamic molecular mechanisms that facilitate DNA replication and repair. Proximity-dependent biotin identification was used to identify associations with 17 proteins within four core replication components, namely the CDC45/MCM2-7/GINS helicase that unwinds DNA, the DNA polymerases, replication protein A subunits, and histone chaperones needed to disassemble and reassemble chromatin. We further investigated the impact of genotoxic stress on these interactions. This analysis revealed a vast proximity association network with 108 nuclear proteins further modulated in the presence of hydroxyurea; 45 being enriched and 63 depleted. Interestingly, hydroxyurea treatment also caused a redistribution of associations with 11 interactors, meaning that the replisome is dynamically reorganized when stressed. The analysis identified several poorly characterized proteins, thereby uncovering new putative players in the cellular response to DNA replication arrest. It also provides a new comprehensive proteomic framework to understand how cells respond to obstacles during DNA replication.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    DNA合成的起始反应是人染色体DNA复制过程中的核心过程。它们分为两个主要过程:复制起点的启动事件,每个复制子的前导链合成的开始,以及在滞后链DNA合成过程中发生的许多起始事件。此外,第三种机制是复制叉失速后DNA合成的重新开始,当DNA损伤阻碍DNA合成的进展时发生。在复制起点的前导链合成的启动在多个水平上被调节,从起源识别到复制解旋酶的组装和激活,Cdc45-MCM2-7-GINS(CMG)复合物。此外,CMG复合物与真核复制DNA聚合酶的多重相互作用,DNA聚合酶α-蛋白酶,DNA聚合酶δ和ε,在复制叉在前导和滞后链DNA合成的起始反应机制中起关键作用。这些相互作用对于在未受干扰和停滞的复制叉上启动信号也很重要,“复制压力”事件,通过ATR(ATM-Rad3相关蛋白激酶)。这些过程对于将细胞的遗传信息准确地传递给它们的女儿至关重要。因此,这些过程中的失败和功能障碍会导致基因组不稳定,导致遗传疾病,包括癌症.在他们有影响力的评论“癌症的标志:新维度”中,因此,Hanahan和Weinberg(2022)将基因组不稳定性称为癌细胞发育过程中的基本功能。近年来,对人类DNA复制的起始过程和机制的理解在各个层面都取得了实质性进展,这将在审查中讨论。
    The initiation reactions of DNA synthesis are central processes during human chromosomal DNA replication. They are separated into two main processes: the initiation events at replication origins, the start of the leading strand synthesis for each replicon, and the numerous initiation events taking place during lagging strand DNA synthesis. In addition, a third mechanism is the re-initiation of DNA synthesis after replication fork stalling, which takes place when DNA lesions hinder the progression of DNA synthesis. The initiation of leading strand synthesis at replication origins is regulated at multiple levels, from the origin recognition to the assembly and activation of replicative helicase, the Cdc45-MCM2-7-GINS (CMG) complex. In addition, the multiple interactions of the CMG complex with the eukaryotic replicative DNA polymerases, DNA polymerase α-primase, DNA polymerase δ and ε, at replication forks play pivotal roles in the mechanism of the initiation reactions of leading and lagging strand DNA synthesis. These interactions are also important for the initiation of signalling at unperturbed and stalled replication forks, \"replication stress\" events, via ATR (ATM-Rad 3-related protein kinase). These processes are essential for the accurate transfer of the cells\' genetic information to their daughters. Thus, failures and dysfunctions in these processes give rise to genome instability causing genetic diseases, including cancer. In their influential review \"Hallmarks of Cancer: New Dimensions\", Hanahan and Weinberg (2022) therefore call genome instability a fundamental function in the development process of cancer cells. In recent years, the understanding of the initiation processes and mechanisms of human DNA replication has made substantial progress at all levels, which will be discussed in the review.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    复制叉逆转是解决遇到DNA损伤所需的基本过程。逆转叉的稳定和最终解决的关键步骤是在暴露的单链DNA(ssDNA)上形成RAD51核蛋白丝。为了避免基因组不稳定,RAD51丝受到各种正负调节剂的严格控制。RADX(X染色体上与RPA相关的RAD51拮抗剂)是最近发现的一种与ssDNA紧密结合的负调节因子,直接与RAD51相互作用,并以上下文相关的方式调节复制叉逆转和稳定。这里,我们对RADX的作用机制进行了基于结构的研究。质量测光实验表明,RADX以浓度依赖的方式形成多个寡聚态,在ssDNA的存在下,三聚体占优势。RADX的结构,没有结构特征的直系同源物,通过低温电子显微镜(cryo-EM)从2至4µ范围内的图从头开始确定。该结构揭示了RADX寡聚化和ssDNA结合的偶联多价结合的分子基础。通过负染色EM成像RADX与RAD51细丝的相互作用,在长丝末端显示RADX低聚物。基于这些结果,我们提出了一个模型,其中RADX通过覆盖和限制RAD51细丝的末端来发挥作用。
    Replication fork reversal is a fundamental process required for resolution of encounters with DNA damage. A key step in the stabilization and eventual resolution of reversed forks is formation of RAD51 nucleoprotein filaments on exposed single strand DNA (ssDNA). To avoid genome instability, RAD51 filaments are tightly controlled by a variety of positive and negative regulators. RADX (RPA-related RAD51-antagonist on the X chromosome) is a recently discovered negative regulator that binds tightly to ssDNA, directly interacts with RAD51, and regulates replication fork reversal and stabilization in a context-dependent manner. Here, we present a structure-based investigation of RADX\'s mechanism of action. Mass photometry experiments showed that RADX forms multiple oligomeric states in a concentration-dependent manner, with a predominance of trimers in the presence of ssDNA. The structure of RADX, which has no structurally characterized orthologs, was determined ab initio by cryo-electron microscopy (cryo-EM) from maps in the 2 to 4 Å range. The structure reveals the molecular basis for RADX oligomerization and the coupled multi-valent binding of ssDNA binding. The interaction of RADX with RAD51 filaments was imaged by negative stain EM, which showed a RADX oligomer at the end of filaments. Based on these results, we propose a model in which RADX functions by capping and restricting the end of RAD51 filaments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在基因组复制期间,复制叉(RF)可能由于不同的障碍或由于复制因子或核苷酸的消耗而停滞。在停滞的RF中,有限数量的组蛋白翻译后修饰涉及RF保护和重启。如果最近观察到SIN3A组蛋白脱乙酰酶复合物减少转录-复制冲突,我们探讨了SIN3A复合物在应激条件下保护RF的作用。我们观察到Sin3A蛋白在存在羟基脲的情况下在复制DNA时富集。在这种情况下,Sin3A耗尽细胞显示RF失速增加,H3乙酰化,和DNA在停滞的RF上断裂。在Sin3A耗尽下,射频恢复受损,和DNA损伤积累。重要的是,这些作用部分依赖于MUS81核酸内切酶,促进DNA断裂和MRE11依赖性DNA降解。我们建议由SIN3A复合物触发的染色质去乙酰化限制了MUS81对停滞的RF的裂解,当DNA复制受到挑战时促进基因组稳定性。
    During genome duplication, replication forks (RFs) can be stalled by different obstacles or by depletion of replication factors or nucleotides. A limited number of histone post-translational modifications at stalled RFs are involved in RF protection and restart. Provided the recent observation that the SIN3A histone deacetylase complex reduces transcription-replication conflicts, we explore the role of the SIN3A complex in protecting RFs under stressed conditions. We observe that Sin3A protein is enriched at replicating DNA in the presence of hydroxyurea. In this situation, Sin3A-depleted cells show increased RF stalling, H3 acetylation, and DNA breaks at stalled RFs. Under Sin3A depletion, RF recovery is impaired, and DNA damage accumulates. Importantly, these effects are partially dependent on the MUS81 endonuclease, which promotes DNA breaks and MRE11-dependent DNA degradation of such breaks. We propose that chromatin deacetylation triggered by the SIN3A complex limits MUS81 cleavage of stalled RFs, promoting genome stability when DNA replication is challenged.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    R环的调节形成和分解是生理基因表达中的自然过程。R环代谢缺陷可导致DNA复制应激,这与各种疾病相关,最终,癌症。蛋白质PARP1、DIDO3和DHX9是R环调节的重要参与者。我们先前描述了DIDO3和DHX9之间的相互作用。这里,我们证明,在小鼠胚胎成纤维细胞中,这三种蛋白质是物理连接的,并且依赖于PARP1活性。DIDO3的C端截短导致这种相互作用的损害;同时,细胞显示增加的复制应激和衰老。DIDO3截短还使细胞部分抵抗体外致癌转化,可以通过永生化来逆转的效果。我们认为PARP1,DIDO3和DHX9蛋白形成调节R环代谢的三元复合物,防止DNA复制应激和随后的衰老。
    The regulated formation and resolution of R-loops is a natural process in physiological gene expression. Defects in R-loop metabolism can lead to DNA replication stress, which is associated with a variety of diseases and, ultimately, with cancer. The proteins PARP1, DIDO3, and DHX9 are important players in R-loop regulation. We previously described the interaction between DIDO3 and DHX9. Here, we show that, in mouse embryonic fibroblasts, the three proteins are physically linked and dependent on PARP1 activity. The C-terminal truncation of DIDO3 leads to the impairment of this interaction; concomitantly, the cells show increased replication stress and senescence. DIDO3 truncation also renders the cells partially resistant to in vitro oncogenic transformation, an effect that can be reversed by immortalization. We propose that PARP1, DIDO3, and DHX9 proteins form a ternary complex that regulates R-loop metabolism, preventing DNA replication stress and subsequent senescence.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    了解控制细胞功能的蛋白质-蛋白质相互作用(PPI)的复杂网络对于揭示生物过程和疾病的分子基础至关重要。质谱(MS)已成为研究蛋白质动力学的强大工具,能够全面分析蛋白质功能,结构,翻译后修饰,互动,和本地化。本文概述了MS技术及其在蛋白质组学研究中的应用,专注于复制叉蛋白质组。复制叉是参与DNA复制的多蛋白质组装体,它的正常功能对于保持基因组完整性至关重要。通过将定量MS标记技术与各种数据采集方法相结合,研究人员在阐明复制叉的复杂过程和分子机制方面取得了重大进展。总的来说,MS彻底改变了我们对蛋白质动力学的理解,为细胞过程和治疗干预的潜在目标提供有价值的见解。
    Understanding the complex network of protein-protein interactions (PPI) that govern cellular functions is essential for unraveling the molecular basis of biological processes and diseases. Mass spectrometry (MS) has emerged as a powerful tool for studying protein dynamics, enabling comprehensive analysis of protein function, structure, post-translational modifications, interactions, and localization. This article provides an overview of MS techniques and their applications in proteomics studies, with a focus on the replication fork proteome. The replication fork is a multi-protein assembly involved in DNA replication, and its proper functioning is crucial for maintaining genomic integrity. By combining quantitative MS labeling techniques with various data acquisition methods, researchers have made significant strides in elucidating the complex processes and molecular mechanisms at the replication fork. Overall, MS has revolutionized our understanding of protein dynamics, offering valuable insights into cellular processes and potential targets for therapeutic interventions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    叉稳定性是基因组DNA复制和遗传完整性的关键。长链非编码RNA(LncRNAs)可能在叉稳定和染色质重塑中起重要作用。现有技术如NCC-RNA测序可用于鉴定新生染色质DNA上的LncRNA。然而,仍然缺乏直接从复制叉中纯化LncRNAs的方法,阻碍对LncRNAs在分叉调控中的功能的深入理解。这里,我们提供了一个名为iROND(新生DNA上的分离RNA)的分步方案。iROND是从iPOND开发和修改的,一种众所周知的纯化叉相关蛋白的方法。iROND依赖于5'-乙炔基-2'-脱氧尿苷(EdU)标记的叉和生物素的点击化学反应。链霉亲和素拉下后,同时纯化叉相关的LncRNAs和蛋白质。iROND与下游RNA测序兼容,qPCR确认,和免疫印迹。结合功能方法,如RNA荧光原位杂交(RNAFISH)和DNA纤维测定,在确定的细胞系中筛选叉结合LncRNAs并探索其功能是可行的。总之,我们提供了叉相关LncRNAs的纯化流程。iROND也可用于研究其他类型的叉相关非编码RNA。关键特征•直接从复制叉纯化长链非编码RNA(LncRNA)。•连接到RNA测序,以便轻松筛选。•允许测试各种基因毒性应激反应。•为下游功能研究提供LncRNA候选列表。
    Fork stability is key to genome DNA duplication and genetic integrity. Long non-coding RNAs (LncRNAs) may play vital roles in fork stabilization and chromatin remodeling. Existing techniques such as NCC-RNA sequencing are useful to identify LncRNAs on nascent chromatin DNA. However, there is still a lack of methods for LncRNAs purification directly from replicative forks, hindering a deep understanding of the functions of LncRNAs in fork regulation. Here, we provide a step-by-step protocol named iROND (isolate RNAs on nascent DNA). iROND was developed and modified from iPOND, a well-known method for purifying fork-associated proteins. iROND relies on click chemistry reaction of 5\'-ethynyl-2\'-deoxyuridine (EdU)-labeled forks and biotin. After streptavidin pull down, fork-associated LncRNAs and proteins are purified simultaneously. iROND is compatible with downstream RNA sequencing, qPCR confirmation, and immunoblotting. Integrated with functional methods such as RNA fluorescent in situ hybridization (RNA FISH) and DNA fiber assay, it is feasible to screen fork-binding LncRNAs in defined cell lines and explore their functions. In summary, we provide a purification pipeline of fork-associated LncRNAs. iROND is also useful for studying other types of fork-associated non-coding RNAs. Key features • Purify long non-coding RNAs (LncRNAs) directly from replication forks. • Connects to RNA sequencing for screening easily. • Allows testing various genotoxic stress responses. • Provides LncRNA candidate list for downstream functional research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    复制叉逆转是解决遇到DNA损伤所需的基本过程。逆转叉的稳定和最终解决的关键步骤是在暴露的ssDNA上形成RAD51核蛋白丝。为了避免基因组不稳定,RAD51丝受到各种正负调节剂的严格控制。RADX是最近发现的一种与ssDNA紧密结合的负调节因子,直接与RAD51相互作用,并以上下文相关的方式调节复制叉逆转和稳定。在这里,我们对RADX的作用机制进行了基于结构的研究。质量测光实验表明,RADX以浓度依赖的方式形成多个寡聚态,在ssDNA的存在下,三聚体占优势。RADX的结构,没有结构特征的直系同源物,通过低温电子显微镜(EM)从2-3µ范围内的图中从头开始确定。该结构揭示了RADX寡聚化和ssDNA结合的分子基础。通过负染色EM成像RADX与RAD51细丝的结合,在长丝末端显示RADX低聚物。基于这些结果,我们提出了一个模型,其中RADX通过覆盖和限制RAD51细丝的生长端起作用。
    尽管RAD51在DNA复制和修复过程中起着核心作用,它的许多调节剂的作用机制知之甚少。在这里,我们结合结构和生物物理数据来确定负调节剂RADX的功能。我们表明RADX在结合DNA时寡聚化,并在末端盖上RAD51灯丝以防止延伸。这项工作推进了如何调节RAD51细丝以调节复制叉逆转并保持基因组稳定性的知识。
    Replication fork reversal is a fundamental process required for resolution of encounters with DNA damage. A key step in the stabilization and eventual resolution of reversed forks is formation of RAD51 nucleoprotein filaments on exposed ssDNA. To avoid genome instability, RAD51 filaments are tightly controlled by a variety of positive and negative regulators. RADX is a recently discovered negative regulator that binds tightly to ssDNA, directly interacts with RAD51, and regulates replication fork reversal and stabilization in a context-dependent manner. Here we present a structure-based investigation of RADX\'s mechanism of action. Mass photometry experiments showed that RADX forms multiple oligomeric states in a concentration dependent manner, with a predominance of trimers in the presence of ssDNA. The structure of RADX, which has no structurally characterized orthologs, was determined ab initio by cryo-electron microscopy (EM) from maps in the 2-3 Å range. The structure reveals the molecular basis for RADX oligomerization and binding of ssDNA binding. The binding of RADX to RAD51 filaments was imaged by negative stain EM, which showed a RADX oligomer at the end of filaments. Based on these results, we propose a model in which RADX functions by capping and restricting the growing end of RAD51 filaments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号