replication errors

  • 文章类型: Journal Article
    DNA错配修复(MMR)系统可促进基因组稳定性并保护人类免受某些类型的癌症侵害。其主要功能是纠正DNA聚合酶错误。MutLα是一种重要的真核MMR因子。我们已经检查了MutLα对维持基因组稳定性的贡献。我们在这里表明,酵母中MutLα的丢失使全基因组突变率增加了约130倍,并产生了由小的插入缺失和碱基取代组成的全基因组突变谱。我们还表明,酵母MutLα的丢失导致易错的MMR,其在5'-ATA-3'序列中产生T>C碱基取代。与这一发现一致,我们对人类全基因组DNA测序数据的检查显示,诱导性多能干细胞中MutLα的缺失会引发易错MMR,导致5\'-NTN-3\'序列中T>C突变的形成.我们的进一步分析表明,不依赖MutLα的MMR在抑制N3同聚序列中的碱基取代中起作用。此外,我们描述了MutLα优先保护非编码DNA免受突变。我们的研究定义了MutLα依赖性和独立机制对全基因组MMR的贡献。
    The DNA mismatch repair (MMR) system promotes genome stability and protects humans from certain types of cancer. Its primary function is the correction of DNA polymerase errors. MutLα is an important eukaryotic MMR factor. We have examined the contributions of MutLα to maintaining genome stability. We show here that loss of MutLα in yeast increases the genome-wide mutation rate by ∼130-fold and generates a genome-wide mutation spectrum that consists of small indels and base substitutions. We also show that loss of yeast MutLα leads to error-prone MMR that produces T > C base substitutions in 5\'-ATA-3\' sequences. In agreement with this finding, our examination of human whole-genome DNA sequencing data has revealed that loss of MutLα in induced pluripotent stem cells triggers error-prone MMR that leads to the formation of T > C mutations in 5\'-NTN-3\' sequences. Our further analysis has shown that MutLα-independent MMR plays a role in suppressing base substitutions in N3 homopolymeric runs. In addition, we describe that MutLα preferentially protects noncoding DNA from mutations. Our study defines the contributions of MutLα-dependent and independent mechanisms to genome-wide MMR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    最近的研究表明,随着年龄的增长,正常人组织会积累大量的体细胞突变,达到与其相应癌症相当的水平。如果突变导致癌症,当突变不可避免时,组织如何避免癌症?
    小肠(SI)和结肠积累了相似数量的复制错误,但是SI腺癌比结直肠癌罕见得多。小肠和大肠都被细分为数百万个由少量干细胞维持的小社区(隐窝)。为了解释SI癌症悖论,四个基本进化参数(突变,漂移,选择,和人口规模)被翻译成隐窝。
    单个干细胞中驱动突变的积累可能类似于进化扑克游戏。SI癌的罕见性可能反映了SI隐窝比结肠更小,干细胞更少,这减少了有突变风险的细胞数量,并可能减少了选择效率。组织微结构可以通过控制直接竞争的相邻细胞的数量来物理调节癌症的进化。对SI癌症悖论的更好理解可以阐明当突变不可避免时组织如何自然避免癌症。
    UNASSIGNED: Recent studies demonstrate that normal human tissues accumulate substantial numbers of somatic mutations with aging, to levels comparable to their corresponding cancers. If mutations cause cancer, how do tissues avoid cancer when mutations are unavoidable?
    UNASSIGNED: The small intestines (SI) and colon accumulate similar numbers of replication errors, but SI adenocarcinoma is much rarer than colorectal cancer. Both the small and large intestines are subdivided into millions of small neighborhoods (crypts) that are maintained by small numbers of stem cells. To explain the SI cancer paradox, four fundamental evolution parameters (mutation, drift, selection, and population size) are translated to crypts.
    UNASSIGNED: The accumulations of driver mutations in a single stem cell may be analogous to an evolutionary poker game. The rarity of SI cancer may reflect that SI crypts are smaller and have fewer stem cells than the colon, which reduces the numbers of cells at risk for mutation and perhaps selection efficiency. Tissue microarchitecture may physically modulate cancer evolution by controlling the numbers of directly competing neighboring cells. A better understanding of the SI cancer paradox may illuminate how tissues naturally avoid cancers when mutations are unavoidable.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Perfect human stem cell genetic fidelity would prevent aging and cancer. However, perfection would be difficult to achieve, and aging is universal and cancers common. A hypothesis is that because mutations are inevitable over a human lifetime, downstream mechanisms have evolved to manage the deleterious effects of beneficial and lethal mutations. In the colon, a crypt stem cell architecture reduces the number of mitotic cells at risk for mutation accumulation, and multiple niche stem cells ensure that a lethal mutation within any single stem cell does not lead to crypt death. In addition, the architecture of the colon crypt stem cell niche may harness probability or chance to randomly discard many beneficial mutations that might lead to cancer. An analysis of somatic chromosome copy number alterations (CNAs) reveals a lack of perfect fidelity in individual normal human crypts, with age-related increases and higher frequencies in ulcerative colitis, a proliferative, inflammatory disease. The age-related increase in somatic CNAs appears consistent with relatively normal replication error and cell division rates. Surprisingly, and similar to point mutations in cancer genomes, the types of crypt mutations were more consistent with random fixation rather than selection. In theory, a simple \"non-Darwinian\" way to nullify selection is to reduce the size of the reproducing population. Fates are more determined by chance rather than selection in very small populations, and therefore selection may be minimized within small crypt niches. The desired effect is that many beneficial mutations that might lead to cancer are randomly lost by drift rather than fixed by selection. The subdivision of the colon into multiple very small stem cell niches may trade Darwinian evolution for non-Darwinian somatic cell evolution, capitulating to aging but reducing cancer risks.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号