recessive Stargardt disease

  • 文章类型: Journal Article
    隐性Stargardt病(STGD1)是由ABCA4基因突变引起的遗传性青少年黄斑病,没有合适的治疗方法。视网膜色素上皮(RPE)中功能性ABCA4的丢失,没有感光细胞的贡献,显示诱导STGD1病理学。这里,我们鉴定了组织蛋白酶D(CatD),原发性RPE溶酶体蛋白酶,作为导致STGD1内溶酶体功能障碍的关键分子参与者,使用新开发的“培养皿中疾病”RPE模型从证实的STGD1患者中获得。来自三名STGD1患者的诱导多能干细胞(iPSC)衍生的RPE表现出溶酶体pH升高,如先前在Abca4-/-小鼠中报道的。来自STGD1患者和Abca4-/-小鼠的RPE中CatD蛋白成熟和活性受损。因此,STGD1RPE细胞有减少的光感受器外节降解和α-突触核蛋白的异常积累,CatD的天然底物。此外,STGD1RPE细胞中功能失调的ABCA4导致自发荧光材料和磷脂酰乙醇胺(PE)的细胞内积累。与STGD1RPE细胞内膜相关的PE分布改变可能会损害LC3相关的吞噬作用,有助于延迟内溶酶体降解活性。STGD1的RPE中的溶酶体的药物介导的再酸化可恢复CatD功能活性并减少未成熟CatD蛋白负荷的积累。该临床前研究验证了CatD缺陷对STGD1病理学的贡献,并为靶向RPE细胞的有效治疗方法提供了证据。我们的发现支持细胞自主RPE驱动的病理学,未来的研究旨在靶向RPE细胞治疗ABCA4介导的视网膜病变。
    Recessive Stargardt disease (STGD1) is an inherited juvenile maculopathy caused by mutations in the ABCA4 gene, for which there is no suitable treatment. Loss of functional ABCA4 in the retinal pigment epithelium (RPE) alone, without contribution from photoreceptor cells, was shown to induce STGD1 pathology. Here, we identified cathepsin D (CatD), the primary RPE lysosomal protease, as a key molecular player contributing to endo-lysosomal dysfunction in STGD1 using a newly developed \"disease-in-a-dish\" RPE model from confirmed STGD1 patients. Induced pluripotent stem cell (iPSC)-derived RPE originating from three STGD1 patients exhibited elevated lysosomal pH, as previously reported in Abca4-/- mice. CatD protein maturation and activity were impaired in RPE from STGD1 patients and Abca4-/- mice. Consequently, STGD1 RPE cells have reduced photoreceptor outer segment degradation and abnormal accumulation of α-synuclein, the natural substrate of CatD. Furthermore, dysfunctional ABCA4 in STGD1 RPE cells results in intracellular accumulation of autofluorescent material and phosphatidylethanolamine (PE). The altered distribution of PE associated with the internal membranes of STGD1 RPE cells presumably compromises LC3-associated phagocytosis, contributing to delayed endo-lysosomal degradation activity. Drug-mediated re-acidification of lysosomes in the RPE of STGD1 restores CatD functional activity and reduces the accumulation of immature CatD protein loads. This preclinical study validates the contribution of CatD deficiencies to STGD1 pathology and provides evidence for an efficacious therapeutic approach targeting RPE cells. Our findings support a cell-autonomous RPE-driven pathology, informing future research aimed at targeting RPE cells to treat ABCA4-mediated retinopathies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:该研究旨在探讨国家眼科研究所视觉功能问卷(NEIVFQ)的心理测量特性以及隐性Stargardt病(STGD1)中视力障碍(IVI)特征的影响。
    方法:将NEIVFQ-25和IVI-28给予STGD1患者。根据心理上建立的NEIVFQ(视觉功能[VF]子量表;社会情感[SE]子量表)和IVI(功能[F]子量表;情感[E]子量表)的维度结构进行了分析。我们分析了内部一致性,维度,项目适合,和差分项功能(DIF),使用潜在特征模型。使用皮尔逊相关系数评估标准有效性。
    结果:71名参与者(42名女性,29名男性;平均年龄,包括44±19年)。自我报告的难度水平低于两种工具中项目的平均难度。仪器的人员可靠性和人员分离指数分别为0.85和2.40(NEIVFQ-VF),0.69和1.49(NEI-VFQ-SE),0.88和2.77(IVI-F),和0.72和1.62(IVI-E)。没有项目显示出在使测量系统失真的水平不匹配。一个IVI项目按性别显示了DIF,但由于个人措施在很大程度上不受删除的影响而保留。NEIVFQ-VF和IVI-F以及NEIVFQ-SE和IVI-E呈正相关(r分别为0.79和0.64)。
    结论:NEIVFQ和IVI在STGD1中具有可接受的心理测量特性,而IVI允许更敏感的人分层。通过包括特定于该疾病的其他内容域,可以改善针对STGD1个体的问卷调查。
    BACKGROUND: The study aimed to explore the psychometric properties of the National Eye Institute Visual Function Questionnaire (NEI VFQ) and Impact of Vision Impairment (IVI) profile in recessive Stargardt disease (STGD1).
    METHODS: The NEI VFQ-25 and IVI-28 were administered to individuals with STGD1. Responses were analyzed following psychometrically established dimension structures of the NEI VFQ (visual function [VF] subscale; socioemotional [SE] subscale) and of the IVI (functional [F] subscale; emotional [E] subscale). We analyzed internal consistency, dimensionality, item fit, and differential item functioning (DIF), using latent trait models. Criterion validity was assessed using Pearson correlation coefficients.
    RESULTS: Seventy-one participants (42 females, 29 males; mean age, 44 ± 19 years) were included. Self-reported difficulty levels were lower than the mean difficulty of items in both instruments. Person reliability and person separation index of the instruments were 0.85 and 2.40 (NEI VFQ-VF), 0.69 and 1.49 (NEI-VFQ-SE), 0.88 and 2.77 (IVI-F), and 0.72 and 1.62 (IVI-E). No items showed misfit at a level distorting the measurement system. One IVI item showed DIF by gender but was retained as person measures were largely unaffected by its removal. NEI VFQ-VF and IVI-F as well as NEI VFQ-SE and IVI-E were positively correlated (r = 0.79 and 0.64, respectively).
    CONCLUSIONS: The NEI VFQ and IVI have acceptable psychometric properties in STGD1 with the IVI allowing more sensitive person stratification. Targeting of questionnaires to individuals with STGD1 might be improved by including additional content domains specific to the disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Quantitative fundus autofluorescence (qAF) is an approach that is built on a confocal scanning laser platform and used to measure the intensity of the inherent autofluorescence of retina elicited by short-wavelength (488 nm) excitation. Being non-invasive, qAF does not interrupt tissue architecture, thus allowing for structural correlations. The spectral features, cellular origin and topographic distribution of the natural autofluorescence of the fundus indicate that it is emitted from retinaldehyde-adducts that form in photoreceptor cells and accumulate, under most conditions, in retinal pigment epithelial cells. The distributions and intensities of fundus autofluorescence deviate from normal in many retinal disorders and it is widely recognized that these changing patterns can aid in the diagnosis and monitoring of retinal disease. The standardized protocol employed by qAF involves the normalization of fundus grey levels to a fluorescent reference installed in the imaging instrument. Together with corrections for magnification and anterior media absorption, this approach facilitates comparisons with serial images and images acquired within groups of patients. Here we provide a comprehensive summary of the principles and practice of qAF and we highlight recent efforts to elucidate retinal disease processes by combining qAF with multi-modal imaging.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Bisretinoid fluorophores form in photoreceptor outer segments from nonenzymatic reactions of vitamin A aldehyde. The short-wavelength autofluorescence (SW-AF) of fundus flecks in recessive Stargardt disease (STGD1) suggests a connection to these fluorophores. Through multimodal imaging, we sought to elucidate this link. Flecks observed in SW-AF images often colocalized with foci exhibiting reduced or absent near-infrared autofluorescence signal, the source of which is melanin in retinal pigment epithelial (RPE) cells. With serial imaging, changes in near-infrared autofluorescence (NIR-AF) preceded the onset of fleck hyperautofluorescence in SW-AF images and fleck profiles in NIR-AF images tended to be larger. Flecks in SW-AF and NIR-AF images also corresponded to hyperreflective lesions traversing photoreceptor-attributable bands in horizontal SD-OCT scans. The hyperreflective lesions interrupted adjacent OCT reflectivity bands and were associated with thinning of the outer nuclear layer. These SD-OCT findings are attributable to photoreceptor cell degeneration. Progressive increases and decreases in the SW-AF intensity of flecks were evident in color-coded quantitative fundus autofluorescence maps. In some cases, flecks appeared to spread radially from the fovea to approximately 8° of eccentricity, beyond which a circumferential spread characterized the distribution. Since the NIR-AF signal is derived from melanin and loss of this autofluorescence is indicative of RPE atrophy, the SW-AF of flecks cannot be accounted for by bisretinoid lipofuscin in RPE. Instead, we suggest that the bisretinoid serving as the source of the SW-AF signal, resides in photoreceptors, the cell that is also the site of bisretinoid synthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    OBJECTIVE: Short-wavelength (SW) fundus autofluorescence (AF) is considered to originate from lipofuscin in retinal pigment epithelium (RPE) and near-infrared (NIR) AF from melanin. In patients with recessive Stargardt disease (STGD1), we correlated SW-AF and NIR-AF with structural information obtained by spectral-domain optical coherence tomography (SD-OCT).
    METHODS: Twenty-four STGD1 patients (45 eyes; age 8 to 61 years) carrying confirmed disease-associated ABCA4 mutations were studied prospectively. Short-wavelength AF, NIR-AF, and SD-OCT images were acquired.
    RESULTS: Five phenotypes were identified according to features of the central lesion and extent of fundus change. Central zones of reduced NIR-AF were typically larger than areas of diminished SW-AF and reduced NIR-AF usually approximated areas of ellipsoid zone (EZ) loss identified by SD-OCT (group 1; r, 0.93, P < 0.0001). In patients having a central lesion with overlapping parafoveal rings of increased NIR-AF and SW-AF (group 3), the extent of EZ loss was strongly correlated with the inner diameter of the NIR-AF ring (r, 0.89, P < 0.0001) and the eccentricity of the outer border of the NIR-AF ring was greater than that of the SW-AF ring.
    CONCLUSIONS: Lesion areas were more completely delineated in NIR-AF images than with SW-AF. In most cases, EZ loss was observed only at locations where NIR-AF was reduced or absent, indicating that RPE cell atrophy occurs in advance of photoreceptor cell degeneration. Because SW-AF was often increased within the central area of EZ disruption, degenerating photoreceptor cells may produce lipofuscin at accelerated levels. Consideration is given to mechanisms underlying hyper-NIR-AF in conjunction with increased SW-AF.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    OBJECTIVE: To quantify fundus autofluorescence (qAF) in patients with recessive Stargardt disease (STGD1).
    METHODS: A total of 42 STGD1 patients (ages: 7-52 years) with at least one confirmed disease-associated ABCA4 mutation were studied. Fundus AF images (488-nm excitation) were acquired with a confocal scanning laser ophthalmoscope equipped with an internal fluorescent reference to account for variable laser power and detector sensitivity. The gray levels (GLs) of each image were calibrated to the reference, zero GL, magnification, and normative optical media density to yield qAF. Texture factor (TF) was calculated to characterize inhomogeneities in the AF image and patients were assigned to the phenotypes of Fishman I through III.
    RESULTS: Quantified fundus autofluorescence in 36 of 42 patients and TF in 27 of 42 patients were above normal limits for age. Young patients exhibited the relatively highest qAF, with levels up to 8-fold higher than healthy eyes. Quantified fundus autofluorescence and TF were higher in Fishman II and III than Fishman I, who had higher qAF and TF than healthy eyes. Patients carrying the G1916E mutation had lower qAF and TF than most other patients, even in the presence of a second allele associated with severe disease.
    CONCLUSIONS: Quantified fundus autofluorescence is an indirect approach to measuring RPE lipofuscin in vivo. We report that ABCA4 mutations cause significantly elevated qAF, consistent with previous reports indicating that increased RPE lipofuscin is a hallmark of STGD1. Even when qualitative differences in fundus AF images are not evident, qAF can elucidate phenotypic variation. Quantified fundus autofluorescence will serve to establish genotype-phenotype correlations and as an outcome measure in clinical trials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Comparative Study
    OBJECTIVE: To report distinct characteristics of fundus autofluorescence (AF) patterns inferior to the optic disc in recessive Stargardt disease (STGD1) and retinitis pigmentosa (RP).
    METHODS: Short-wavelength (SW) and near-infrared (NIR) AF images were acquired from patients with STGD1 and RP. In SW- and NIR-AF images of STGD1 patients, gray levels (GL) on both sides of the demarcation line were measured.
    RESULTS: In STGD1, a demarcation line, which has been assigned to the closed optic fissure, was visible on SW-AF and NIR-AF inferior to the optic disc. In healthy subjects, this demarcation line is only visible by SW-AF. At 20° inferior to the disc center, AF levels on the nasal side were 25% (±11%) lower than on the temporal side in SW-AF images and 18% (±11%) lower in NIR-AF images. For both STGD1 and RP, the inferonasal quadrant exhibited distinct SW- and NIR-AF patterns compared with other fundus areas. Disease-related AF changes, such as flecks, appeared to respect the demarcation line as a boundary.
    CONCLUSIONS: Disease-related AF patterns originating in RPE in STGD1 and RP appear to respect the demarcation line in the inferonasal quadrant of the fundus as a border. The visibility of the inferonasal demarcation line by NIR-AF in STGD1 but not in healthy eyes may indicate that increased levels of RPE lipofuscin modulate the melanin-related NIR-AF signal. This feature of NIR-AF images may aid in the diagnosis of STGD1 patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号